Suppr超能文献

基于贝叶斯区间的肿瘤剂量递增设计,采用重复准连续毒性模型。

Bayesian interval-based oncology dose-finding design with repeated quasi-continuous toxicity model.

机构信息

Statistical and Quantitative Science, Data Science Institute, Takeda Pharmaceutical Co. Limited, Cambridge, MA 02139, USA.

Servier Pharmaceuticals, Boston, MA 02210, USA.

出版信息

Contemp Clin Trials. 2021 Mar;102:106265. doi: 10.1016/j.cct.2021.106265. Epub 2021 Jan 5.

Abstract

In oncology dose-finding clinical trials, the key to accurately estimating the maximum tolerated dose (MTD) is to use all data efficiently given small sample sizes. Currently, popular designs dichotomize adverse events of various types and grades that occur within the first treatment cycle into binary toxicity outcomes of dose-limiting toxicity (DLT) events. Such compression of toxicity data from multiple treatment cycles causes huge loss of information, often resulting in MTD estimation with large bias and variance. To improve this, a continuous endpoint (the total toxicity profile, TTP) was proposed to incorporate adverse event types and grades. The Bayesian Repeated Measures Design (RMD) was further developed by Yin et al. (2017) to account for the cumulative toxicity information from multiple treatment cycles. However, the existing RMD method selects the dose that minimizes the loss function based on point estimates, which may generate inconsistent results due to small sample sizes in phase I trials. To reduce the variability in dose escalation decision-making, we propose an improved repeated measures design with an interval-based decision rule that selects the dose with the highest posterior probability of falling in a pre-specified target toxicity interval. Through comprehensive simulations, we compared this proposed design with the existing RMD design, along with well-established DLT-based designs such as Continual Reassessment Method (CRM) and Bayesian Logistic Regression Model (BLRM). The results demonstrated that our proposed design outperforms all other designs in terms of accurately identifying the MTD and assigning fewer patients to sub-therapeutic or overly toxic doses.

摘要

在肿瘤学剂量探索临床试验中,准确估计最大耐受剂量(MTD)的关键是在小样本量的情况下有效地利用所有数据。目前,流行的设计将在第一个治疗周期内发生的各种类型和等级的不良事件二分法为剂量限制毒性(DLT)事件的二进制毒性结果。这种从多个治疗周期压缩毒性数据会导致大量信息丢失,通常会导致 MTD 估计存在很大的偏差和方差。为了改进这一点,提出了一个连续终点(总毒性概况,TTP)来合并不良事件类型和等级。Yin 等人(2017 年)进一步开发了贝叶斯重复测量设计(RMD),以考虑来自多个治疗周期的累积毒性信息。然而,现有的 RMD 方法基于点估计选择最小化损失函数的剂量,这可能由于 I 期试验中的小样本量而产生不一致的结果。为了减少剂量递增决策的可变性,我们提出了一种改进的重复测量设计,该设计具有基于区间的决策规则,该规则选择在后验概率落入预定目标毒性区间的剂量。通过综合模拟,我们将这种设计与现有的 RMD 设计以及基于 DLT 的成熟设计(如连续评估方法(CRM)和贝叶斯逻辑回归模型(BLRM))进行了比较。结果表明,在准确识别 MTD 和将较少的患者分配到治疗效果不佳或毒性过高的剂量方面,我们提出的设计优于所有其他设计。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验