Suppr超能文献

用于生物医学应用的多尺度热性能测量

Multiscale Thermal Property Measurements for Biomedical Applications.

作者信息

Natesan Harishankar, Bischof John C

机构信息

Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States.

出版信息

ACS Biomater Sci Eng. 2017 Nov 13;3(11):2669-2691. doi: 10.1021/acsbiomaterials.6b00565. Epub 2017 Jan 24.

Abstract

Bioheat transfer-based innovations in health care include applications such as focal treatments for cancer and cardiovascular disease and the preservation of tissues and organs for transplantation. In these applications, the ability to preserve or destroy a biomaterial is directly dependent on its temperature history. Thus, thermal measurement and modeling are necessary to either avoid or induce the injury required. In this review paper, we will first define and discuss thermal conductivity and calorimetric measurements of biomaterials in the cryogenic (<-40 °C), subzero (<0 °C), hypothermic (<37 °C), and hyperthermic (>37 °C) regimes. For thermal conductivity measurements, we review the use of 3ω and laser flash techniques for measurement of thermal conductivity in thin (1 μm-2 mm thick), anisotropic, and/or multilayered tissues. At the nanoscale, we review the use of pump-probe and scanning probe methods to measure thermal conductivity at short temporal scales (10 ps-100 ns) and spatial scales (1 nm-1 μm), particularly in the coating and surrounding medium around metallic nanoparticles (1 nm-20 nm). For calorimetric techniques, we review differential scanning calorimetry (DSC), which is intrinsically at the microscale (e.g., tissue pieces or millions of cells in media). DSC is used with large sample mass (∼3-100 mg) over wide temperature ranges (-180 to 750 °C) with low-temperature scanning rates (<750 °C/min). The need to assess smaller samples at higher rates has led to the development of nanocalorimetry on a silicon based membrane. Here the sample weight is as low as 10 ng, thereby allowing ultra-rapid heating rates (∼1 × 10 C/min). Finally, we discuss various opportunities that are driving the need for new micro- and nanoscale thermal measurements.

摘要

基于生物传热的医疗保健创新包括癌症和心血管疾病的聚焦治疗以及移植用组织和器官的保存等应用。在这些应用中,保存或破坏生物材料的能力直接取决于其温度历程。因此,热测量和建模对于避免或引发所需的损伤是必要的。在这篇综述论文中,我们将首先定义并讨论生物材料在低温(<-40°C)、亚零度(<0°C)、低温(<37°C)和高温(>37°C)状态下的热导率和量热测量。对于热导率测量,我们回顾了3ω和激光闪光技术在测量薄(1μm - 2mm厚)、各向异性和/或多层组织中的热导率方面的应用。在纳米尺度上,我们回顾了泵浦 - 探测和扫描探针方法在短时间尺度(10ps - 100ns)和空间尺度(1nm - 1μm)下测量热导率的应用,特别是在金属纳米颗粒(1nm - 20nm)周围的涂层和周围介质中。对于量热技术,我们回顾了差示扫描量热法(DSC),它本质上是在微观尺度(例如组织块或培养基中的数百万个细胞)。DSC用于在宽温度范围(-180至750°C)内对大样品质量(约3 - 100mg)进行测量,扫描速率较低(<750°C/min)。在更高速率下评估更小样品的需求促使了基于硅膜的纳米量热法的发展。这里样品重量低至10ng,从而允许超快速加热速率(约1×10°C/min)。最后,我们讨论了推动新型微米和纳米尺度热测量需求的各种机遇。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验