Stojakovic Andrea, Trushin Sergey, Sheu Anthony, Khalili Layla, Chang Su-Youne, Li Xing, Christensen Trace, Salisbury Jeffrey L, Geroux Rachel E, Gateno Benjamin, Flannery Padraig J, Dehankar Mrunal, Funk Cory C, Wilkins Jordan, Stepanova Anna, O'Hagan Tara, Galkin Alexander, Nesbitt Jarred, Zhu Xiujuan, Tripathi Utkarsh, Macura Slobodan, Tchkonia Tamar, Pirtskhalava Tamar, Kirkland James L, Kudgus Rachel A, Schoon Renee A, Reid Joel M, Yamazaki Yu, Kanekiyo Takahisa, Zhang Song, Nemutlu Emirhan, Dzeja Petras, Jaspersen Adam, Kwon Ye In Christopher, Lee Michael K, Trushina Eugenia
Department of Neurology, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA.
Institute for Translational Neuroscience, University of Minnesota Twin Cities, 2101 6th Street SE, Minneapolis, MN, 55455, USA.
Commun Biol. 2021 Jan 8;4(1):61. doi: 10.1038/s42003-020-01584-y.
Alzheimer's Disease (AD) is a devastating neurodegenerative disorder without a cure. Here we show that mitochondrial respiratory chain complex I is an important small molecule druggable target in AD. Partial inhibition of complex I triggers the AMP-activated protein kinase-dependent signaling network leading to neuroprotection in symptomatic APP/PS1 female mice, a translational model of AD. Treatment of symptomatic APP/PS1 mice with complex I inhibitor improved energy homeostasis, synaptic activity, long-term potentiation, dendritic spine maturation, cognitive function and proteostasis, and reduced oxidative stress and inflammation in brain and periphery, ultimately blocking the ongoing neurodegeneration. Therapeutic efficacy in vivo was monitored using translational biomarkers FDG-PET, P NMR, and metabolomics. Cross-validation of the mouse and the human transcriptomic data from the NIH Accelerating Medicines Partnership-AD database demonstrated that pathways improved by the treatment in APP/PS1 mice, including the immune system response and neurotransmission, represent mechanisms essential for therapeutic efficacy in AD patients.
阿尔茨海默病(AD)是一种毁灭性的神经退行性疾病,目前尚无治愈方法。在此我们表明,线粒体呼吸链复合体I是AD中一个重要的可被小分子药物作用的靶点。对复合体I的部分抑制触发了依赖于AMP激活蛋白激酶的信号网络,从而在有症状的APP/PS1雌性小鼠(一种AD的转化模型)中实现神经保护。用复合体I抑制剂治疗有症状的APP/PS1小鼠可改善能量稳态、突触活动、长时程增强、树突棘成熟、认知功能和蛋白质稳态,并减少大脑和外周的氧化应激与炎症,最终阻止正在进行的神经退行性变。使用转化生物标志物FDG-PET、磷核磁共振和代谢组学监测体内治疗效果。对来自美国国立卫生研究院加速药物合作-AD数据库的小鼠和人类转录组数据进行交叉验证表明,APP/PS1小鼠中经治疗后得到改善的通路,包括免疫系统反应和神经传递,代表了对AD患者治疗效果至关重要的机制。