文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

解析导致世界最大养殖鱼类致死性有害藻华的环境过程:智利,2016 年。

Disentangling the environmental processes responsible for the world's largest farmed fish-killing harmful algal bloom: Chile, 2016.

机构信息

Centro de Estudios de Algas Nocivas (CREAN), Instituto de Fomento Pesquero (IFOP), Puerto Montt, Chile; Centro FONDAP de Investigación en Dinámica de Ecosistemas Marinos de Altas Latitudes (IDEAL), Valdivia, Chile.

Centro de Estudios de Algas Nocivas (CREAN), Instituto de Fomento Pesquero (IFOP), Puerto Montt, Chile.

出版信息

Sci Total Environ. 2021 Apr 20;766:144383. doi: 10.1016/j.scitotenv.2020.144383. Epub 2020 Dec 25.


DOI:10.1016/j.scitotenv.2020.144383
PMID:33421787
Abstract

The dictyochophyte microalga Pseudochattonella verruculosa was responsible for the largest farmed fish mortality ever recorded in the world, with losses for the Chilean salmon industry amounting to US$ 800 M in austral summer 2016. Super-scale climatic anomalies resulted in strong vertical water column stratification that stimulated development of a dynamic P. verruculosa thin layer (up to 38 μg chl a L) for several weeks in Reloncaví Sound. Hydrodynamic modeling (MIKE 3D) indicated that the Sound had extremely low flushing rates (between 121 and 200 days) in summer 2016. Reported algal cell densities of 7000-20,000 cells mL generated respiratory distress in fish that was unlikely due to low dissolved oxygen (permanently >4 mg L). Histological examination of salmon showed that gills were the most affected organ with significant tissue damage and circulatory disorders. It is possible that some of this damage was due to a diatom bloom that preceded the Pseudochattonella event, thereby rendering the fish more susceptible to Pseudochattonella. No correlation between magnitude of fish mortality and algal cell abundance nor fish age was evident. Algal cultures revealed rapid growth rates and high cell densities (up to 600,000 cells mL), as well as highly complex life cycle stages that can be easily overlooked in monitoring programs. In cell-based bioassays, Chilean P. verruculosa was only toxic to the RTgill-W1 cell line following exposures to high cell densities of lysed cells (>100,000 cells mL). Fatty acid profiles of a cultured strain showed elevated concentrations of potentially ichthyotoxic, long-chain polyunsaturated fatty acids (PUFAs) (69.7% ± 1.8%)- stearidonic (SDA, 18:4ω3-28.9%), and docosahexaenoic acid (DHA, 22:6ω3-22.3%), suggesting that lipid peroxidation may help to explain the mortalities, though superoxide production by Pseudochattonella was low (< 0.21 ± 0.19 pmol O cell h). It therefore remains unknown what the mechanisms of salmon mortality were during the Pseudochattonella bloom. Multiple mitigation strategies were used by salmon farmers during the event, with only delayed seeding of juvenile fish into the cages and towing of cages to sanctuary sites being effective. Airlift pumping, used effectively against other fish-killing HABs in the US and Canada was not effective, perhaps because it brought subsurface layers of Pseudochattonella to the surface, or and it also may have lysed the fragile cells, rendering them more lethal. The present study highlights knowledge gaps and inefficiency of contingency plans by the fish farming industry to overcome future fish-killing algal blooms under future climate change scenarios. The use of new technologies based on molecular methods for species detection, good farm practices by fish farms, and possible mitigation strategies are discussed.

摘要

齿盘藻微藻 Pseudochattonella verruculosa 是导致世界上有记录以来最大规模养殖鱼类死亡的罪魁祸首,2016 年澳大利亚夏季,智利鲑鱼产业损失达 8 亿美元。超级规模的气候异常导致强烈的垂直水柱分层,从而刺激了 Reloncaví 海峡中动态 Pseudochattonella verruculosa 薄水层(高达 38μg chl a L)的形成,并持续数周。水动力模型(MIKE 3D)表明,2016 年夏季,该海峡的水交换率极低(121-200 天)。报道的藻类细胞密度为 7000-20,000 个细胞/mL,使鱼类呼吸困难,这很可能不是由于溶解氧低(永久>4mg/L)造成的。对鲑鱼的组织学检查表明,鳃是受影响最严重的器官,存在明显的组织损伤和循环障碍。可能是由于在 Pseudochattonella 事件之前发生了硅藻水华,从而使鱼类更容易受到 Pseudochattonella 的影响。鱼类死亡率与藻类细胞丰度或鱼类年龄之间没有明显的相关性。藻类培养显示出快速的生长速度和高细胞密度(高达 600,000 个细胞/mL),以及高度复杂的生命周期阶段,在监测计划中很容易被忽视。在基于细胞的生物测定中,智利的 Pseudochattonella verruculosa 仅在暴露于高浓度裂解细胞(>100,000 个细胞/mL)时对 RTgill-W1 细胞系有毒。培养菌株的脂肪酸图谱显示出潜在的鱼类毒性长链多不饱和脂肪酸(PUFA)的浓度升高(69.7%±1.8%)-硬脂酸(SDA,18:4ω3-28.9%)和二十二碳六烯酸(DHA,22:6ω3-22.3%),表明脂质过氧化可能有助于解释死亡率,尽管 Pseudochattonella 的超氧化物生成量较低(<0.21±0.19pmol O 细胞 h)。因此,仍然不清楚 Pseudochattonella 水华期间鲑鱼死亡的机制是什么。鲑鱼养殖者在事件期间使用了多种缓解策略,只有延迟将幼鱼播种到网箱中和将网箱拖到避难所才是有效的。气举抽吸在美加两国有效对抗其他鱼类致死性赤潮,但效果不佳,这可能是因为它将 Pseudochattonella 的次表层带到了表面,或者它也可能使脆弱的细胞裂解,使其更具致命性。本研究强调了鱼类养殖业在未来应对未来气候变化情景下的鱼类致死性藻类水华时,存在知识空白和应急计划效率低下的问题。讨论了基于分子方法的物种检测新技术的使用、鱼类养殖场的良好养殖实践以及可能的缓解策略。

相似文献

[1]
Disentangling the environmental processes responsible for the world's largest farmed fish-killing harmful algal bloom: Chile, 2016.

Sci Total Environ. 2021-4-20

[2]
Quantifying harmful algal bloom thresholds for farmed salmon in southern Chile.

Harmful Algae. 2018-6-18

[3]
The ichthyotoxic genus Pseudochattonella (Dictyochophyceae): Distribution, toxicity, enumeration, ecological impact, succession and life history - A review.

Harmful Algae. 2016-8-25

[4]
Pelagic harmful algal blooms and climate change: Lessons from nature's experiments with extremes.

Harmful Algae. 2019-5-3

[5]
Hydroclimatic conditions trigger record harmful algal bloom in western Patagonia (summer 2016).

Sci Rep. 2018-1-22

[6]
in Patagonian Fjords: Genetics, Growth, Pigment Signature and Role of PUFA and ROS in Ichthyotoxicity.

Toxins (Basel). 2022-8-23

[7]
Interactive effects of temperature and salinity on the growth and cytotoxicity of the fish-killing microalgal species Heterosigma akashiwo and Pseudochattonella verruculosa.

Mar Pollut Bull. 2022-1

[8]
The impact of local and climate change drivers on the formation, dynamics, and potential recurrence of a massive fish-killing microalgal bloom in Patagonian fjord.

Sci Total Environ. 2023-3-20

[9]
Harmful algal blooms and their effects in coastal seas of Northern Europe.

Harmful Algae. 2021-2

[10]
Primary Isolation and Characterization of Tenacibaculum maritimum from Chilean Atlantic Salmon Mortalities Associated with a Pseudochattonella spp. Algal Bloom.

J Aquat Anim Health. 2017-9

引用本文的文献

[1]
Overview of Patagonian Red Octopus () Fisheries in Chilean Regions and Their Food Safety Aspects.

Animals (Basel). 2025-5-19

[2]
Microbiota Dysbiosis in Is Induced by Hypoxia, Leading to Molecular and Functional Consequences.

Microorganisms. 2025-4-5

[3]
Risk Assessment of Harmful Algal Blooms in Salmon Farming: Scotland as a Case Study.

Toxins (Basel). 2025-1-13

[4]
Allelopathic Effect of a Chilean Strain of (Gymnodiniales, Dinoflagellata) on Phytoplankton Species.

Microorganisms. 2024-9-5

[5]
Hydrographic shifts in coastal waters reflect climate-driven changes in hydrological regimes across Northwestern Patagonia.

Sci Rep. 2024-9-4

[6]
Review of Harmful Algal Blooms (HABs) Causing Marine Fish Kills: Toxicity and Mitigation.

Plants (Basel). 2023-11-22

[7]
Toxic Algal Bloom Recurrence in the Era of Global Change: Lessons from the Chilean Patagonian Fjords.

Microorganisms. 2023-7-25

[8]
Harmful Algae Impacting Aquatic Organisms: Recent Field and Laboratory Observations.

Toxins (Basel). 2023-5-15

[9]
Coastal phytoplankton blooms expand and intensify in the 21st century.

Nature. 2023-3

[10]
Mitigation of Marine Dinoflagellates Using Hydrogen Peroxide (HO) Increases Toxicity towards Epithelial Gill Cells.

Microorganisms. 2022-12-28

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索