Huang Chao, Wang Qizhuo, Zhao Mingfu, Chen Chunyan, Pan Sinuo, Yuan Minjie
Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China.
Ningbo Institute of Information Technology Application, Chinese Academy of Sciences, Ningbo, China.
Front Physiol. 2020 Dec 23;11:611596. doi: 10.3389/fphys.2020.611596. eCollection 2020.
Minimally invasive surgery (MIS) has been the preferred surgery approach owing to its advantages over conventional open surgery. As a major limitation, the lack of tactile perception impairs the ability of surgeons in tissue distinction and maneuvers. Many studies have been reported on industrial robots to perceive various tactile information. However, only force data are widely used to restore part of the surgeon's sense of touch in MIS. In recent years, inspired by image classification technologies in computer vision, tactile data are represented as images, where a tactile element is treated as an image pixel. Processing raw data or features extracted from tactile images with artificial intelligence (AI) methods, including clustering, support vector machine (SVM), and deep learning, has been proven as effective methods in industrial robotic tactile perception tasks. This holds great promise for utilizing more tactile information in MIS. This review aims to provide potential tactile perception methods for MIS by reviewing literatures on tactile sensing in MIS and literatures on industrial robotic tactile perception technologies, especially AI methods on tactile images.
由于微创手术(MIS)相较于传统开放手术具有优势,它已成为首选的手术方式。作为一个主要限制,缺乏触觉感知会削弱外科医生辨别组织和操作的能力。关于工业机器人感知各种触觉信息的研究已有很多报道。然而,在微创手术中,只有力数据被广泛用于恢复外科医生的部分触觉。近年来,受计算机视觉中的图像分类技术启发,触觉数据被表示为图像,其中触觉元素被视为图像像素。使用人工智能(AI)方法处理从触觉图像中提取的原始数据或特征,包括聚类、支持向量机(SVM)和深度学习,已被证明是工业机器人触觉感知任务中的有效方法。这对于在微创手术中利用更多触觉信息具有巨大潜力。本综述旨在通过回顾有关微创手术中触觉传感的文献以及有关工业机器人触觉感知技术的文献,特别是关于触觉图像的人工智能方法,为微创手术提供潜在的触觉感知方法。