Suppr超能文献

基于贝叶斯和逆贝叶斯推理的群体模型中的 Lévy 游走

Lévy Walk in Swarm Models Based on Bayesian and Inverse Bayesian Inference.

作者信息

Gunji Yukio-Pegio, Kawai Takeshi, Murakami Hisashi, Tomaru Takenori, Minoura Mai, Shinohara Shuji

机构信息

Department of Intermedia Art and Science, School of Fundamental Science and Technology, Waseda University, 3-4-1 Ohkubo, Shinjuku-ku, Tokyo, 169-8555, Japan.

Research Center for Advanced Science and Technology, The University of Tokyo Komaba 4-6-1, Meguro-ku, Tokyo, 153-0041, Japan.

出版信息

Comput Struct Biotechnol J. 2020 Dec 8;19:247-260. doi: 10.1016/j.csbj.2020.11.045. eCollection 2021.

Abstract

While swarming behavior is regarded as a critical phenomenon in phase transition and frequently shows the properties of a critical state such as Lévy walk, a general mechanism to explain the critical property in swarming behavior has not yet been found. Here, we address this problem with a simple swarm model, the Self-Propelled Particle (SPP) model, and propose a way to explain this critical behavior by introducing agents making decisions via the data-hypothesis interaction in Bayesian inference, namely, Bayesian and inverse Bayesian inference (BIB). We compare three SPP models, namely, the simple SPP, the SPP with Bayesian-only inference (BO) and the SPP with BIB models. We show that only the BIB model entails coexisting tornado, splash and translation behaviors, and the Lévy walk pattern.

摘要

虽然群体行为被视为相变中的一种关键现象,并且经常表现出诸如 Lévy 行走等临界状态的特性,但尚未找到解释群体行为临界特性的一般机制。在此,我们用一个简单的群体模型——自驱动粒子(SPP)模型来解决这个问题,并提出一种通过引入在贝叶斯推理中经由数据-假设相互作用做出决策的智能体来解释这种临界行为的方法,即贝叶斯和逆贝叶斯推理(BIB)。我们比较了三种 SPP 模型,即简单 SPP 模型、仅具有贝叶斯推理(BO)的 SPP 模型和具有 BIB 的 SPP 模型。我们表明,只有 BIB 模型会同时出现龙卷风、飞溅和平移行为以及 Lévy 行走模式。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c4b0/7773539/4396ef07f97a/ga1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验