Gunji Yukio-Pegio, Kawai Takeshi, Murakami Hisashi, Tomaru Takenori, Minoura Mai, Shinohara Shuji
Department of Intermedia Art and Science, School of Fundamental Science and Technology, Waseda University, 3-4-1 Ohkubo, Shinjuku-ku, Tokyo, 169-8555, Japan.
Research Center for Advanced Science and Technology, The University of Tokyo Komaba 4-6-1, Meguro-ku, Tokyo, 153-0041, Japan.
Comput Struct Biotechnol J. 2020 Dec 8;19:247-260. doi: 10.1016/j.csbj.2020.11.045. eCollection 2021.
While swarming behavior is regarded as a critical phenomenon in phase transition and frequently shows the properties of a critical state such as Lévy walk, a general mechanism to explain the critical property in swarming behavior has not yet been found. Here, we address this problem with a simple swarm model, the Self-Propelled Particle (SPP) model, and propose a way to explain this critical behavior by introducing agents making decisions via the data-hypothesis interaction in Bayesian inference, namely, Bayesian and inverse Bayesian inference (BIB). We compare three SPP models, namely, the simple SPP, the SPP with Bayesian-only inference (BO) and the SPP with BIB models. We show that only the BIB model entails coexisting tornado, splash and translation behaviors, and the Lévy walk pattern.
虽然群体行为被视为相变中的一种关键现象,并且经常表现出诸如 Lévy 行走等临界状态的特性,但尚未找到解释群体行为临界特性的一般机制。在此,我们用一个简单的群体模型——自驱动粒子(SPP)模型来解决这个问题,并提出一种通过引入在贝叶斯推理中经由数据-假设相互作用做出决策的智能体来解释这种临界行为的方法,即贝叶斯和逆贝叶斯推理(BIB)。我们比较了三种 SPP 模型,即简单 SPP 模型、仅具有贝叶斯推理(BO)的 SPP 模型和具有 BIB 的 SPP 模型。我们表明,只有 BIB 模型会同时出现龙卷风、飞溅和平移行为以及 Lévy 行走模式。