Suppr超能文献

通过掺杂LaNiO前驱体结构的可控原位分解调控Ni/LaO催化剂的甲烷干重整反应活性

Steering the Methane Dry Reforming Reactivity of Ni/LaO Catalysts by Controlled In Situ Decomposition of Doped LaNiO Precursor Structures.

作者信息

Bekheet Maged F, Delir Kheyrollahi Nezhad Parastoo, Bonmassar Nicolas, Schlicker Lukas, Gili Albert, Praetz Sebastian, Gurlo Aleksander, Doran Andrew, Gao Yuanxu, Heggen Marc, Niaei Aligholi, Farzi Ali, Schwarz Sabine, Bernardi Johannes, Klötzer Bernhard, Penner Simon

机构信息

Fachgebiet Keramische Werkstoffe/Chair of Advanced Ceramic Materials, Institut für Werkstoffwissenschaften und -technologien, Technische Universität Berlin, Hardenbergstr. 40, 10623 Berlin, Germany.

Reactor & Catalyst Research Lab, Department of Chemical Engineering, University of Tabriz, Tabriz 51386, Iran.

出版信息

ACS Catal. 2021 Jan 1;11(1):43-59. doi: 10.1021/acscatal.0c04290. Epub 2020 Dec 11.

Abstract

The influence of A- and/or B-site doping of Ruddlesden-Popper perovskite materials on the crystal structure, stability, and dry reforming of methane (DRM) reactivity of specific ABO phases (A = La, Ba; B = Cu, Ni) has been evaluated by a combination of catalytic experiments, in situ X-ray diffraction, X-ray absorption spectroscopy (XAS), X-ray photoelectron spectroscopy (XPS), and aberration-corrected electron microscopy. At room temperature, B-site doping of LaNiO with Cu stabilizes the orthorhombic structure () of the perovskite, while A-site doping with Ba yields a tetragonal space group (4/). We observed the orthorhombic-to-tetragonal transformation above 170 °C for LaNiCuO and LaNiCuO, slightly higher than for undoped LaNiO. Loss of oxygen in interstitial sites of the tetragonal structure causes further structure transformations for all samples before decomposition in the temperature range of 400 °C-600 °C. Controlled in situ decomposition of the parent or A/B-site doped perovskite structures in a DRM mixture (CH:CO = 1:1) in all cases yields an active phase consisting of exsolved nanocrystalline metallic Ni particles in contact with hexagonal LaO and a mixture of (oxy)carbonate phases (hexagonal and monoclinic LaOCO, BaCO). Differences in the catalytic activity evolve because of (i) the in situ formation of Ni-Cu alloy phases (in a composition of >7:1 = Ni:Cu) for LaNiCuO, LaNiCuO, and LaBaNiCuO, (ii) the resulting Ni particle size and amount of exsolved Ni, and (iii) the inherently different reactivity of the present (oxy)carbonate species. Based on the onset temperature of catalytic DRM activity, the latter decreases in the order of LaNiCuO ∼ LaNiCuO ≥ LaBaNiCuO > LaNiO > LaBaNiO. Simple A-site doped LaBaNiO is essentially DRM inactive. The Ni particle size can be efficiently influenced by introducing Ba into the A site of the respective Ruddlesden-Popper structures, allowing us to control the Ni particle size between 10 nm and 30 nm both for simple B-site and A-site doped structures. Hence, it is possible to steer both the extent of the metal-oxide-(oxy)carbonate interface and its chemical composition and reactivity. Counteracting the limitation of the larger Ni particle size, the activity can, however, be improved by additional Cu-doping on the B-site, enhancing the carbon reactivity. Exemplified for the LaNiO based systems, we show how the delicate antagonistic balance of doping with Cu (rendering the LaNiO structure less stable and suppressing coking by efficiently removing surface carbon) and Ba (rendering the LaNiO structure more stable and forming unreactive surface or interfacial carbonates) can be used to tailor prospective DRM-active catalysts.

摘要

通过催化实验、原位X射线衍射、X射线吸收光谱(XAS)、X射线光电子能谱(XPS)和像差校正电子显微镜相结合的方法,评估了Ruddlesden-Popper钙钛矿材料的A位和/或B位掺杂对特定ABO相(A = La、Ba;B = Cu、Ni)的晶体结构、稳定性以及甲烷干重整(DRM)反应活性的影响。在室温下,用Cu对LaNiO进行B位掺杂可稳定钙钛矿的正交结构(),而用Ba进行A位掺杂则产生四方空间群(4/)。我们观察到LaNiCuO和LaNiCuO在170℃以上发生从正交结构到四方结构的转变,略高于未掺杂的LaNiO。四方结构间隙位置的氧损失导致所有样品在400℃ - 600℃温度范围内分解前进一步发生结构转变。在所有情况下,将母体或A/B位掺杂的钙钛矿结构在DRM混合物(CH:CO = 1:1)中进行原位控制分解,会产生一种活性相,该活性相由析出的与六方LaO接触的纳米晶金属Ni颗粒以及(氧)碳酸盐相混合物(六方和单斜LaOCO、BaCO)组成。催化活性的差异源于:(i)LaNiCuO、LaNiCuO和LaBaNiCuO原位形成Ni - Cu合金相(Ni:Cu组成比>7:1);(ii)由此产生的Ni颗粒尺寸和析出的Ni量;(iii)当前(氧)碳酸盐物种固有的不同反应活性。基于催化DRM活性的起始温度,其降低顺序为LaNiCuO ∼ LaNiCuO ≥ LaBaNiCuO > LaNiO > LaBaNiO。简单的A位掺杂LaBaNiO基本上对DRM无活性。通过将Ba引入相应Ruddlesden-Popper结构的A位,可以有效地影响Ni颗粒尺寸,使我们能够在简单的B位和A位掺杂结构中都将Ni颗粒尺寸控制在10nm至30nm之间。因此,有可能控制金属 - 氧化物 - (氧)碳酸盐界面的程度及其化学成分和反应活性。然而,为了克服较大Ni颗粒尺寸的限制,可以通过在B位额外掺杂Cu来提高活性,增强碳反应活性。以LaNiO基体系为例,我们展示了如何利用Cu掺杂(使LaNiO结构稳定性降低并通过有效去除表面碳抑制结焦)和Ba掺杂(使LaNiO结构更稳定并形成无反应活性的表面或界面碳酸盐)之间微妙的拮抗平衡来定制预期的DRM活性催化剂。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验