Delir Kheyrollahi Nezhad Parastoo, Bekheet Maged F, Bonmassar Nicolas, Gili Albert, Kamutzki Franz, Gurlo Aleksander, Doran Andrew, Schwarz Sabine, Bernardi Johannes, Praetz Sebastian, Niaei Aligholi, Farzi Ali, Penner Simon
Reactor & Catalyst Research Lab, Department of Chemical Engineering, Faculty of Chemical and Petroleum Engineering, University of Tabriz Tabriz Iran.
Fachgebiet Keramische Werkstoffe/Chair of Advanced Ceramic Materials, Institut für Werkstoffwissenschaften und -technologien, Technische Universität Berlin Hardenbergstr. 40 10623 Berlin Germany.
Catal Sci Technol. 2022 Jan 6;12(4):1229-1244. doi: 10.1039/d1cy02044g. eCollection 2022 Feb 21.
To elucidate the role of earth alkaline doping in perovskite-based dry reforming of methane (DRM) catalysts, we embarked on a comparative and exemplary study of a Ni-based Sm perovskite with and without Sr doping. While the Sr-doped material appears as a structure-pure SmSrNiO Ruddlesden Popper structure, the undoped material is a NiO/monoclinic SmO composite. Hydrogen pre-reduction or direct activation in the DRM mixture in all cases yields either active Ni/SmO or Ni/SmO/SrCO materials, with albeit different short-term stability and deactivation behavior. The much smaller Ni particle size after hydrogen reduction of SmSrNiO, and of generally all undoped materials stabilizes the short and long-term DRM activity. Carbon dioxide reactivity manifests itself in the direct formation of SrCO in the case of SmSrNiO, which is dominant at high temperatures. For SmSrNiO, the CO : H ratio exceeds 1 at these temperatures, which is attributed to faster direct carbon dioxide conversion to SrCO without catalytic DRM reactivity. As no SmOCO surface or bulk phase as a result of carbon dioxide activation was observed for any material - in contrast to LaOCO - we suggest that oxy-carbonate formation plays only a minor role for DRM reactivity. Rather, we identify surface graphitic carbon as the potentially reactive intermediate. Graphitic carbon has already been shown as a crucial reaction intermediate in metal-oxide DRM catalysts and appears both for SmSrNiO and NiO/monoclinic SmO after reaction as crystalline structure. It is significantly more pronounced for the latter due to the higher amount of oxygen-deficient monoclinic SmO facilitating carbon dioxide activation. Despite the often reported beneficial role of earth alkaline dopants in DRM catalysis, we show that the situation is more complex. In our studies, the detrimental role of earth alkaline doping manifests itself in the exclusive formation of the sole stable carbonated species and a general destabilization of the Ni/monoclinic SmO interface by favoring Ni particle sintering.
为了阐明碱土金属掺杂在基于钙钛矿的甲烷干重整(DRM)催化剂中的作用,我们对掺锶和未掺锶的镍基钐钙钛矿进行了一项对比性的典型研究。虽然掺锶材料呈现为结构纯净的SmSrNiO鲁德尔斯登-波珀结构,但未掺杂材料是NiO/单斜SmO复合材料。在所有情况下,通过氢气预还原或在DRM混合物中直接活化,均可得到活性Ni/SmO或Ni/SmO/SrCO材料,尽管它们具有不同的短期稳定性和失活行为。SmSrNiO以及一般所有未掺杂材料在氢气还原后,镍颗粒尺寸小得多,这稳定了短期和长期的DRM活性。对于SmSrNiO,二氧化碳反应性表现为在高温下占主导的SrCO的直接形成。在这些温度下,SmSrNiO的CO : H比超过1,这归因于二氧化碳在没有催化DRM反应性的情况下更快地直接转化为SrCO。与LaOCO不同,在任何材料中均未观察到因二氧化碳活化而形成的SmOCO表面或体相,我们认为碳酸盐形成对DRM反应性仅起次要作用。相反地,我们确定表面石墨碳为潜在的反应中间体。石墨碳已被证明是金属氧化物DRM催化剂中的关键反应中间体,并且在反应后以晶体结构同时出现在SmSrNiO和NiO/单斜SmO中。由于缺氧单斜SmO的含量较高,有利于二氧化碳活化,因此后者更为明显。尽管经常报道碱土金属掺杂剂在DRM催化中具有有益作用,但我们表明情况更为复杂。在我们研究中,碱土金属掺杂的有害作用表现为仅形成唯一稳定的碳酸化物种,以及通过促进镍颗粒烧结而使Ni/单斜SmO界面普遍失稳。