Suppr超能文献

新型冠状病毒主要蛋白酶潜在抑制剂的计算预测

Computational Prediction of Potential Inhibitors of the Main Protease of SARS-CoV-2.

作者信息

Abel Renata, Paredes Ramos María, Chen Qiaofeng, Pérez-Sánchez Horacio, Coluzzi Flaminia, Rocco Monica, Marchetti Paolo, Mura Cameron, Simmaco Maurizio, Bourne Philip E, Preissner Robert, Banerjee Priyanka

机构信息

Institute of Physiology, Charité-University Medicine Berlin, Berlin, Germany.

METMED Research Group, Physical Chemistry Department, Universidade da Coruña (UDC), A Coruña, Spain.

出版信息

Front Chem. 2020 Dec 23;8:590263. doi: 10.3389/fchem.2020.590263. eCollection 2020.

Abstract

The rapidly developing pandemic, known as coronavirus disease 2019 (COVID-19) and caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has recently spread across 213 countries and territories. This pandemic is a dire public health threat-particularly for those suffering from hypertension, cardiovascular diseases, pulmonary diseases, or diabetes; without approved treatments, it is likely to persist or recur. To facilitate the rapid discovery of inhibitors with clinical potential, we have applied ligand- and structure-based computational approaches to develop a virtual screening methodology that allows us to predict potential inhibitors. In this work, virtual screening was performed against two natural products databases, Super Natural II and Traditional Chinese Medicine. Additionally, we have used an integrated drug repurposing approach to computationally identify potential inhibitors of the main protease of SARS-CoV-2 in databases of drugs (both approved and withdrawn). Roughly 360,000 compounds were screened using various molecular fingerprints and molecular docking methods; of these, 80 docked compounds were evaluated in detail, and the 12 best hits from four datasets were further inspected molecular dynamics simulations. Finally, toxicity and cytochrome inhibition profiles were computationally analyzed for the selected candidate compounds.

摘要

迅速发展的大流行疾病,即2019冠状病毒病(COVID-19),由严重急性呼吸综合征冠状病毒2(SARS-CoV-2)引起,最近已蔓延至213个国家和地区。这场大流行是对公共卫生的严重威胁,尤其是对那些患有高血压、心血管疾病、肺部疾病或糖尿病的人;由于没有获批的治疗方法,它很可能持续存在或复发。为了促进快速发现具有临床潜力的抑制剂,我们应用了基于配体和结构的计算方法来开发一种虚拟筛选方法,使我们能够预测潜在的抑制剂。在这项工作中,针对两个天然产物数据库Super Natural II和中药数据库进行了虚拟筛选。此外,我们还采用了一种综合的药物重新利用方法,在药物数据库(包括已获批和已撤市的药物)中通过计算识别SARS-CoV-2主要蛋白酶的潜在抑制剂。使用各种分子指纹和分子对接方法筛选了约360,000种化合物;其中,对80种对接化合物进行了详细评估,并对四个数据集中的12个最佳命中物进行了分子动力学模拟进一步研究。最后,对选定的候选化合物进行了毒性和细胞色素抑制谱的计算分析。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8517/7786237/e53b0a5c34e8/fchem-08-590263-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验