Suppr超能文献

分层宏-微多孔WPU-ECM支架联合微骨折促进兔关节软骨再生

Hierarchical macro-microporous WPU-ECM scaffolds combined with Microfracture Promote Articular Cartilage Regeneration in Rabbits.

作者信息

Chen Mingxue, Li YangYang, Liu Shuyun, Feng Zhaoxuan, Wang Hao, Yang Dejin, Guo Weimin, Yuan Zhiguo, Gao Shuang, Zhang Yu, Zha Kangkang, Huang Bo, Wei Fu, Sang Xinyu, Tian Qinyu, Yang Xuan, Sui Xiang, Zhou Yixin, Zheng Yufeng, Guo Quanyi

机构信息

Department of Orthopaedic Surgery, Peking University Fourth School of Clinical Medicine, Beijing Jishuitan Hospital, No. 31 Xinjiekou East Street, Xicheng District, Beijing, 100035, People's Republic of China.

Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No.28 Fuxing Road, Haidian District, Beijing, 100853, People's Republic of China.

出版信息

Bioact Mater. 2020 Dec 22;6(7):1932-1944. doi: 10.1016/j.bioactmat.2020.12.009. eCollection 2021 Jul.

Abstract

Tissue engineering provides a promising avenue for treating cartilage defects. However, great challenges remain in the development of structurally and functionally optimized scaffolds for cartilage repair and regeneration. In this study, decellularized cartilage extracellular matrix (ECM) and waterborne polyurethane (WPU) were employed to construct WPU and WPU-ECM scaffolds by water-based 3D printing using low-temperature deposition manufacturing (LDM) system, which combines rapid deposition manufacturing with phase separation techniques. The scaffolds successfully achieved hierarchical macro-microporous structures. After adding ECM, WPU scaffolds were markedly optimized in terms of porosity, hydrophilia and bioactive components. Moreover, the optimized WPU-ECM scaffolds were found to be more suitable for cell distribution, adhesion, and proliferation than the WPU scaffolds. Most importantly, the WPU-ECM scaffold could facilitate the production of glycosaminoglycan (GAG) and collagen and the upregulation of cartilage-specific genes. These results indicated that the WPU-ECM scaffold with hierarchical macro-microporous structures could recreate a favorable microenvironment for cell adhesion, proliferation, differentiation, and ECM production. studies further revealed that the hierarchical macro-microporous WPU-ECM scaffold combined with the microfracture procedure successfully regenerated hyaline cartilage in a rabbit model. Six months after implantation, the repaired cartilage showed a similar histological structure and mechanical performance to that of normal cartilage. In conclusion, the hierarchical macro-microporous WPU-ECM scaffold may be a promising candidate for cartilage tissue engineering applications in the future.

摘要

组织工程为治疗软骨缺损提供了一条有前景的途径。然而,在开发用于软骨修复和再生的结构和功能优化支架方面,仍存在巨大挑战。在本研究中,采用脱细胞软骨细胞外基质(ECM)和水性聚氨酯(WPU),通过使用低温沉积制造(LDM)系统的水基3D打印构建WPU和WPU-ECM支架,该系统将快速沉积制造与相分离技术相结合。这些支架成功实现了分级宏观-微观多孔结构。添加ECM后,WPU支架在孔隙率、亲水性和生物活性成分方面得到了显著优化。此外,发现优化后的WPU-ECM支架比WPU支架更适合细胞分布、黏附和增殖。最重要的是,WPU-ECM支架可促进糖胺聚糖(GAG)和胶原蛋白的产生以及软骨特异性基因的上调。这些结果表明,具有分级宏观-微观多孔结构的WPU-ECM支架可为细胞黏附、增殖、分化和ECM产生重新创造一个有利的微环境。 研究进一步表明,分级宏观-微观多孔WPU-ECM支架与微骨折手术相结合,在兔模型中成功再生了透明软骨。植入6个月后,修复的软骨显示出与正常软骨相似的组织学结构和力学性能。总之,分级宏观-微观多孔WPU-ECM支架可能是未来软骨组织工程应用的一个有前景的候选材料。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e852/7772526/cf7eaadb18eb/fx1.jpg

相似文献

1
Hierarchical macro-microporous WPU-ECM scaffolds combined with Microfracture Promote Articular Cartilage Regeneration in Rabbits.
Bioact Mater. 2020 Dec 22;6(7):1932-1944. doi: 10.1016/j.bioactmat.2020.12.009. eCollection 2021 Jul.
2
Microenvironmentally optimized 3D-printed TGFβ-functionalized scaffolds facilitate endogenous cartilage regeneration in sheep.
Acta Biomater. 2022 Sep 15;150:181-198. doi: 10.1016/j.actbio.2022.07.029. Epub 2022 Jul 25.
5
Solubilized Cartilage ECM Facilitates the Recruitment and Chondrogenesis of Endogenous BMSCs in Collagen Scaffolds for Enhancing Microfracture Treatment.
ACS Appl Mater Interfaces. 2021 Jun 2;13(21):24553-24564. doi: 10.1021/acsami.1c07530. Epub 2021 May 20.
6
Biodegradable water-based polyurethane scaffolds with a sequential release function for cell-free cartilage tissue engineering.
Acta Biomater. 2019 Apr 1;88:301-313. doi: 10.1016/j.actbio.2019.02.044. Epub 2019 Feb 27.
7
Cell-derived decellularized extracellular matrix scaffolds for articular cartilage repair.
Int J Artif Organs. 2021 Apr;44(4):269-281. doi: 10.1177/0391398820953866. Epub 2020 Sep 18.
8
Silk fibroin-chondroitin sulfate scaffold with immuno-inhibition property for articular cartilage repair.
Acta Biomater. 2017 Nov;63:64-75. doi: 10.1016/j.actbio.2017.09.005. Epub 2017 Sep 7.
9
hWJECM-Derived Oriented Scaffolds with Autologous Chondrocytes for Rabbit Cartilage Defect Repairing.
Tissue Eng Part A. 2018 Jun;24(11-12):905-914. doi: 10.1089/ten.TEA.2017.0223. Epub 2018 Feb 2.

引用本文的文献

3
Preparation of hydrogel microsphere and its application in articular cartilage injury.
Mater Today Bio. 2025 Mar 8;31:101641. doi: 10.1016/j.mtbio.2025.101641. eCollection 2025 Apr.
4
Research advance of 3D printing for articular cartilage regeneration.
Regen Med. 2025 Jan;20(1):45-55. doi: 10.1080/17460751.2025.2466346. Epub 2025 Feb 17.
5
Bolstered bone regeneration by multiscale customized magnesium scaffolds with hierarchical structures and tempered degradation.
Bioact Mater. 2025 Jan 3;46:457-475. doi: 10.1016/j.bioactmat.2024.12.002. eCollection 2025 Apr.
6
[Construction of a novel tissue engineered meniscus scaffold based on low temperature deposition three-dimenisonal printing technology].
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2024 Jun 15;38(6):748-754. doi: 10.7507/1002-1892.202402063.
7
Injectable and in situ foaming shape-adaptive porous Bio-based polyurethane scaffold used for cartilage regeneration.
Bioact Mater. 2024 May 13;39:1-13. doi: 10.1016/j.bioactmat.2024.03.012. eCollection 2024 Sep.
8
Articular cartilage repair biomaterials: strategies and applications.
Mater Today Bio. 2024 Jan 6;24:100948. doi: 10.1016/j.mtbio.2024.100948. eCollection 2024 Feb.
9
Recent advances in 3D bioprinted cartilage-mimicking constructs for applications in tissue engineering.
Mater Today Bio. 2023 Nov 17;23:100870. doi: 10.1016/j.mtbio.2023.100870. eCollection 2023 Dec.
10
Decellularized extracellular matrix-based composite scaffolds for tissue engineering and regenerative medicine.
Regen Biomater. 2023 Dec 1;11:rbad107. doi: 10.1093/rb/rbad107. eCollection 2024.

本文引用的文献

1
Bioprinted Injectable Hierarchically Porous Gelatin Methacryloyl Hydrogel Constructs with Shape-Memory Properties.
Adv Funct Mater. 2020 Nov 11;30(46). doi: 10.1002/adfm.202003740. Epub 2020 Sep 6.
2
Cell-free 3D wet-electrospun PCL/silk fibroin/Sr scaffold promotes successful total meniscus regeneration in a rabbit model.
Acta Biomater. 2020 Sep 1;113:196-209. doi: 10.1016/j.actbio.2020.06.017. Epub 2020 Jun 17.
3
Use of Biomaterials for 3D Printing by Fused Deposition Modeling Technique: A Review.
Front Chem. 2020 May 7;8:315. doi: 10.3389/fchem.2020.00315. eCollection 2020.
6
A novel waterborne polyurethane with biodegradability and high flexibility for 3D printing.
Biofabrication. 2020 May 12;12(3):035015. doi: 10.1088/1758-5090/ab7de0.
8
Opportunities and challenges of translational 3D bioprinting.
Nat Biomed Eng. 2020 Apr;4(4):370-380. doi: 10.1038/s41551-019-0471-7. Epub 2019 Nov 6.
9
PCL-MECM-Based Hydrogel Hybrid Scaffolds and Meniscal Fibrochondrocytes Promote Whole Meniscus Regeneration in a Rabbit Meniscectomy Model.
ACS Appl Mater Interfaces. 2019 Nov 6;11(44):41626-41639. doi: 10.1021/acsami.9b13611. Epub 2019 Oct 22.
10
Recent Advances in Enabling Technologies in 3D Printing for Precision Medicine.
Adv Mater. 2020 Apr;32(13):e1902516. doi: 10.1002/adma.201902516. Epub 2019 Sep 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验