Suppr超能文献

具有形状记忆特性的生物打印可注射分层多孔甲基丙烯酰化明胶水凝胶构建体。

Bioprinted Injectable Hierarchically Porous Gelatin Methacryloyl Hydrogel Constructs with Shape-Memory Properties.

作者信息

Ying Guoliang, Jiang Nan, Parra Carolina, Tang Guosheng, Zhang Jingyi, Wang Hongjun, Chen Shixuan, Huang Ning-Ping, Xie Jingwei, Zhang Yu Shrike

机构信息

Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA.

School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.

出版信息

Adv Funct Mater. 2020 Nov 11;30(46). doi: 10.1002/adfm.202003740. Epub 2020 Sep 6.

Abstract

Direct injection of cell-laden hydrogels shows high potentials in tissue regeneration for translational therapy. The traditional cell-laden hydrogels are often used as bulk space fillers to tissue defects after injection, likely limiting their structural controllability. On the other hand, patterned cell-laden hydrogel constructs often necessitate invasive surgical procedures. To overcome these problems, herein, we report a unique strategy for encapsulating living human cells in a pore-forming gelatin methacryloyl (GelMA)-based bioink to ultimately produce injectable hierarchically macro-micro-nanoporous cell-laden GelMA hydrogel constructs through three-dimensional (3D) extrusion bioprinting. The hydrogel constructs can be fabricated into various shapes and sizes that are defect-specific. Due to the hierarchically macro-micro-nanoporous structures, the cell-laden hydrogel constructs can readily recover to their original shapes, and sustain high cell viability, proliferation, spreading, and differentiation after compression and injection. Besides, studies further reveal that the hydrogel constructs can integrate well with the surrounding host tissues. These findings suggest that our unique 3D-bioprinted pore-forming GelMA hydrogel constructs are promising candidates for applications in minimally invasive tissue regeneration and cell therapy.

摘要

直接注射载细胞水凝胶在组织再生的转化治疗中显示出巨大潜力。传统的载细胞水凝胶在注射后常被用作组织缺损的大量空间填充材料,这可能限制了它们的结构可控性。另一方面,图案化的载细胞水凝胶构建体通常需要侵入性手术操作。为了克服这些问题,在此,我们报告了一种独特的策略,即将活的人类细胞封装在基于明胶甲基丙烯酰(GelMA)的成孔生物墨水中,最终通过三维(3D)挤出生物打印生产出可注射的具有分级宏观-微观-纳米多孔结构的载细胞GelMA水凝胶构建体。水凝胶构建体可以制造成各种针对特定缺损的形状和尺寸。由于具有分级宏观-微观-纳米多孔结构,载细胞水凝胶构建体能够很容易地恢复到其原始形状,并且在压缩和注射后能维持高细胞活力、增殖、铺展和分化。此外,研究进一步表明,水凝胶构建体能够与周围的宿主组织良好整合。这些发现表明,我们独特的3D生物打印成孔GelMA水凝胶构建体有望应用于微创组织再生和细胞治疗。

相似文献

1
Bioprinted Injectable Hierarchically Porous Gelatin Methacryloyl Hydrogel Constructs with Shape-Memory Properties.
Adv Funct Mater. 2020 Nov 11;30(46). doi: 10.1002/adfm.202003740. Epub 2020 Sep 6.
2
Aqueous Two-Phase Emulsion Bioink-Enabled 3D Bioprinting of Porous Hydrogels.
Adv Mater. 2018 Dec;30(50):e1805460. doi: 10.1002/adma.201805460. Epub 2018 Oct 21.
3
Direct 3D Bioprinting of Tough and Antifatigue Cell-Laden Constructs Enabled by a Self-Healing Hydrogel Bioink.
Biomacromolecules. 2023 Jun 12;24(6):2549-2562. doi: 10.1021/acs.biomac.3c00057. Epub 2023 Apr 28.
4
Bioprinting of a Cell-Laden Conductive Hydrogel Composite.
ACS Appl Mater Interfaces. 2019 Aug 28;11(34):30518-30533. doi: 10.1021/acsami.9b07353. Epub 2019 Aug 16.
6
Recent Advances on Bioprinted Gelatin Methacrylate-Based Hydrogels for Tissue Repair.
Tissue Eng Part A. 2021 Jun;27(11-12):679-702. doi: 10.1089/ten.TEA.2020.0350. Epub 2021 Mar 9.
7
Osteogenic and angiogenic tissue formation in high fidelity nanocomposite Laponite-gelatin bioinks.
Biofabrication. 2019 Jun 12;11(3):035027. doi: 10.1088/1758-5090/ab19fd.
8
Embedded 3D Bioprinting of Gelatin Methacryloyl-Based Constructs with Highly Tunable Structural Fidelity.
ACS Appl Mater Interfaces. 2020 Oct 7;12(40):44563-44577. doi: 10.1021/acsami.0c15078. Epub 2020 Sep 23.

引用本文的文献

1
Fishing out AIEC with FimH capturing microgels for inflammatory bowel disease treatment.
Nat Commun. 2025 Aug 25;16(1):7924. doi: 10.1038/s41467-025-63276-7.
2
Advanced cell-adaptable hydrogels for bioprinting.
Bioact Mater. 2025 Aug 6;53:831-854. doi: 10.1016/j.bioactmat.2025.07.044. eCollection 2025 Nov.
3
Porous hierarchically ordered hydrogels demonstrating structurally dependent mechanical properties.
Nat Commun. 2025 Apr 23;16(1):3792. doi: 10.1038/s41467-025-59171-w.
4
Microgel-based bioink for extrusion-based 3D bioprinting and its applications in tissue engineering.
Bioact Mater. 2025 Feb 20;48:273-293. doi: 10.1016/j.bioactmat.2025.02.003. eCollection 2025 Jun.
5
Integrated biomimetic bioprinting of perichondrium with cartilage for auricle reconstruction.
Bioact Mater. 2025 Feb 14;48:100-117. doi: 10.1016/j.bioactmat.2025.02.011. eCollection 2025 Jun.
6
Engineered Living Systems Based on Gelatin: Design, Manufacturing, and Applications.
Adv Mater. 2025 Jun;37(22):e2416260. doi: 10.1002/adma.202416260. Epub 2025 Feb 5.
8
Advancements in Tissue Engineering: A Review of Bioprinting Techniques, Scaffolds, and Bioinks.
Biomed Eng Comput Biol. 2024 Oct 1;15:11795972241288099. doi: 10.1177/11795972241288099. eCollection 2024.
9
A Reconfigurable Proangiogenic Hydrogel Patch Enabling Minimally Invasive Drug Delivery.
ACS Appl Mater Interfaces. 2024 Sep 4;16(35):46159-46166. doi: 10.1021/acsami.4c10688. Epub 2024 Aug 21.
10
Voxel Design of Grayscale DLP 3D-Printed Soft Robots.
Adv Sci (Weinh). 2024 Jul;11(28):e2309932. doi: 10.1002/advs.202309932. Epub 2024 May 20.

本文引用的文献

1
Injectable Shape-Holding Collagen Hydrogel for Cell Encapsulation and Delivery Cross-linked Using Thiol-Michael Addition Click Reaction.
Biomacromolecules. 2019 Sep 9;20(9):3475-3484. doi: 10.1021/acs.biomac.9b00769. Epub 2019 Aug 13.
2
Patient-specific meniscus prototype based on 3D bioprinting of human cell-laden scaffold.
Bone Joint Res. 2019 Mar 2;8(2):101-106. doi: 10.1302/2046-3758.82.BJR-2018-0134.R1. eCollection 2019 Feb.
3
Tacrolimus- and Nerve Growth Factor-Treated Allografts for Neural Tissue Regeneration.
ACS Chem Neurosci. 2019 Mar 20;10(3):1411-1419. doi: 10.1021/acschemneuro.8b00452. Epub 2019 Jan 7.
4
Aqueous Two-Phase Emulsion Bioink-Enabled 3D Bioprinting of Porous Hydrogels.
Adv Mater. 2018 Dec;30(50):e1805460. doi: 10.1002/adma.201805460. Epub 2018 Oct 21.
5
Digitally Tunable Microfluidic Bioprinting of Multilayered Cannular Tissues.
Adv Mater. 2018 Oct;30(43):e1706913. doi: 10.1002/adma.201706913. Epub 2018 Aug 23.
6
Permeability mapping of gelatin methacryloyl hydrogels.
Acta Biomater. 2018 Sep 1;77:38-47. doi: 10.1016/j.actbio.2018.07.006. Epub 2018 Jul 4.
8
Development of Organic/Inorganic Compatible and Sustainably Bioactive Composites for Effective Bone Regeneration.
Biomacromolecules. 2018 Sep 10;19(9):3637-3648. doi: 10.1021/acs.biomac.8b00707. Epub 2018 Aug 10.
9
Advances in engineering hydrogels.
Science. 2017 May 5;356(6337). doi: 10.1126/science.aaf3627.
10
Extrusion Bioprinting of Shear-Thinning Gelatin Methacryloyl Bioinks.
Adv Healthc Mater. 2017 Jun;6(12). doi: 10.1002/adhm.201601451. Epub 2017 May 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验