Wu Jiang, Fu Liwei, Yan Zineng, Yang Yu, Yin Han, Li Pinxue, Yuan Xun, Ding Zhengang, Kang Teng, Tian Zhuang, Liao Zhiyao, Tian Guangzhao, Ning Chao, Li Yuguo, Sui Xiang, Chen Mingxue, Liu Shuyun, Guo Quanyi
Guizhou Medical University, Guiyang, 550004, Guizhou Province, People's Republic of China.
Beijing Key Laboratory of Regenerative Medicine in Orthopedics; Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Institute of Orthopedics, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing, 100853, People's Republic of China.
Biomater Res. 2023 Feb 5;27(1):7. doi: 10.1186/s40824-023-00349-y.
In recent years, there has been significant research progress on in situ articular cartilage (AC) tissue engineering with endogenous stem cells, which uses biological materials or bioactive factors to improve the regeneration microenvironment and recruit more endogenous stem cells from the joint cavity to the defect area to promote cartilage regeneration.
In this study, we used ECM alone as a bioink in low-temperature deposition manufacturing (LDM) 3D printing and then successfully fabricated a hierarchical porous ECM scaffold incorporating GDF-5.
Comparative in vitro experiments showed that the 7% ECM scaffolds had the best biocompatibility. After the addition of GDF-5 protein, the ECM scaffolds significantly improved bone marrow mesenchymal stem cell (BMSC) migration and chondrogenic differentiation. Most importantly, the in vivo results showed that the ECM/GDF-5 scaffold significantly enhanced in situ cartilage repair.
In conclusion, this study reports the construction of a new scaffold based on the concept of in situ regeneration, and we believe that our findings will provide a new treatment strategy for AC defect repair.
近年来,利用内源性干细胞进行原位关节软骨(AC)组织工程的研究取得了显著进展,该技术通过生物材料或生物活性因子改善再生微环境,并从关节腔招募更多内源性干细胞至缺损区域以促进软骨再生。
在本研究中,我们单独使用细胞外基质(ECM)作为低温沉积制造(LDM)3D打印中的生物墨水,随后成功制备了一种包含生长分化因子5(GDF-5)的分级多孔ECM支架。
体外对比实验表明,7%的ECM支架具有最佳的生物相容性。添加GDF-5蛋白后,ECM支架显著改善了骨髓间充质干细胞(BMSC)的迁移和软骨形成分化。最重要的是,体内实验结果表明,ECM/GDF-5支架显著增强了原位软骨修复。
总之,本研究报道了基于原位再生概念构建的新型支架,我们相信我们的研究结果将为AC缺损修复提供新的治疗策略。