Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China.
Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China.
Endoscopy. 2021 Dec;53(12):1199-1207. doi: 10.1055/a-1350-5583. Epub 2021 Mar 4.
Esophagogastroduodenoscopy (EGD) is a prerequisite for detecting upper gastrointestinal lesions especially early gastric cancer (EGC). An artificial intelligence system has been shown to monitor blind spots during EGD. In this study, we updated the system (ENDOANGEL), verified its effectiveness in improving endoscopy quality, and pretested its performance in detecting EGC in a multicenter randomized controlled trial.
ENDOANGEL was developed using deep convolutional neural networks and deep reinforcement learning. Patients undergoing EGD in five hospitals were randomly assigned to the ENDOANGEL-assisted group or to a control group without use of ENDOANGEL. The primary outcome was the number of blind spots. Secondary outcomes included performance of ENDOANGEL in predicting EGC in a clinical setting.
1050 patients were randomized, and 498 and 504 patients in the ENDOANGEL and control groups, respectively, were analyzed. Compared with the control group, the ENDOANGEL group had fewer blind spots (mean 5.38 [standard deviation (SD) 4.32] vs. 9.82 [SD 4.98]; < 0.001) and longer inspection time (5.40 [SD 3.82] vs. 4.38 [SD 3.91] minutes; < 0.001). In the ENDOANGEL group, 196 gastric lesions with pathological results were identified. ENDOANGEL correctly predicted all three EGCs (one mucosal carcinoma and two high grade neoplasias) and two advanced gastric cancers, with a per-lesion accuracy of 84.7 %, sensitivity of 100 %, and specificity of 84.3 % for detecting gastric cancer.
In this multicenter study, ENDOANGEL was an effective and robust system to improve the quality of EGD and has the potential to detect EGC in real time.
食管胃十二指肠镜检查(EGD)是检测上消化道病变(尤其是早期胃癌[EGC])的前提条件。人工智能系统已被证明可以监测EGD 中的盲区。在这项研究中,我们对该系统(ENDOANGEL)进行了更新,验证了其提高内镜质量的有效性,并在多中心随机对照试验中对其检测 EGC 的性能进行了预测试。
ENDOANGEL 是使用深度卷积神经网络和深度强化学习开发的。在五家医院接受 EGD 的患者被随机分配到 ENDOANGEL 辅助组或不使用 ENDOANGEL 的对照组。主要结局是盲区数量。次要结局包括 ENDOANGEL 在临床环境中预测 EGC 的性能。
共随机分配 1050 例患者,ENDOANGEL 组和对照组分别有 498 例和 504 例患者纳入分析。与对照组相比,ENDOANGEL 组的盲区数量更少(平均 5.38 [标准差(SD)4.32] 比 9.82 [SD 4.98];<0.001)和检查时间更长(5.40 [SD 3.82] 比 4.38 [SD 3.91] 分钟;<0.001)。ENDOANGEL 组发现 196 个有病理结果的胃病变。ENDOANGEL 正确预测了所有 3 例 EGC(1 例黏膜癌和 2 例高级别肿瘤)和 2 例进展期胃癌,其对胃癌的病变检测准确率为 84.7%,灵敏度为 100%,特异性为 84.3%。
在这项多中心研究中,ENDOANGEL 是一种有效且强大的系统,可以提高 EGD 的质量,并有可能实时检测 EGC。