文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

使用手持式红外超宽带穿墙雷达进行人体定位和生命体征信号测量概述。

The Overview of Human Localization and Vital Sign Signal Measurement Using Handheld IR-UWB Through-Wall Radar.

机构信息

School of Aeronautics and Astronautics, Central South University, Changsha 410083, China.

Key Laboratory of Underwater Acoustic Communication and Marine Information Technology of the Ministry of Education, Xiamen University, Xiamen 361005, China.

出版信息

Sensors (Basel). 2021 Jan 8;21(2):402. doi: 10.3390/s21020402.


DOI:10.3390/s21020402
PMID:33430061
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7827243/
Abstract

Obtaining information (e.g., position, respiration, and heartbeat rates) on humans located behind opaque and non-metallic obstacles (e.g., walls and wood) has prompted the development of non-invasive remote sensing technologies. Due to its excellent features like high penetration ability, short blind area, fine-range resolution, high environment adoption capabilities, low cost and power consumption, and simple hardware design, impulse radio ultra-wideband (IR-UWB) through-wall radar has become the mainstream primary application radar used for the non-invasive remote sensing. IR-UWB through-wall radar has been developed for nearly 40 years, and various hardware compositions, deployment methods, and signal processing algorithms have been introduced by many scholars. The purpose of these proposed approaches is to obtain human information more accurately and quickly. In this paper, we focus on IR-UWB through-wall radar and introduce the key advances in system design and deployment, human detection theory, and signal processing algorithms, such as human vital sign signal measurement methods and moving human localization. Meanwhile, we discuss the engineering pre-processing methods of IR-UWB through-wall radar. The lasts research progress in the field is also presented. Based on this progress, the conclusions and the development directions of the IR-UWB through-wall radar in the future are also preliminarily forecasted.

摘要

获取位于不透明非金属障碍物(如墙壁和木材)后面的人体信息(例如位置、呼吸和心跳率),促使了非侵入式远程传感技术的发展。由于其具有穿透能力强、盲区小、距离分辨率高、环境适应能力强、成本低、功耗低、硬件设计简单等优点,脉冲无线电超宽带(IR-UWB)穿墙雷达已成为用于非侵入式远程传感的主流初级应用雷达。IR-UWB 穿墙雷达的发展已经近 40 年,许多学者已经提出了各种硬件组成、部署方法和信号处理算法。这些方法的目的是更准确、更快速地获取人体信息。本文主要关注 IR-UWB 穿墙雷达,并介绍系统设计和部署、人体检测理论以及信号处理算法的关键进展,例如人体生命体征信号测量方法和移动物体定位。同时,我们还讨论了 IR-UWB 穿墙雷达的工程预处理方法。最后,还介绍了该领域的最新研究进展。基于这一进展,对未来 IR-UWB 穿墙雷达的结论和发展方向进行了初步预测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa7f/7827243/2f8bbf380eac/sensors-21-00402-g024.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa7f/7827243/f345c0f84dd8/sensors-21-00402-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa7f/7827243/92cd678d5983/sensors-21-00402-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa7f/7827243/06b839467ab9/sensors-21-00402-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa7f/7827243/0fde3b8a4f1a/sensors-21-00402-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa7f/7827243/5fd104581cba/sensors-21-00402-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa7f/7827243/c9614ba32cc8/sensors-21-00402-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa7f/7827243/dcc06b6fdcd5/sensors-21-00402-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa7f/7827243/35ad2f4136ad/sensors-21-00402-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa7f/7827243/a4d6a7d59404/sensors-21-00402-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa7f/7827243/8bf2ac50c14f/sensors-21-00402-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa7f/7827243/302c10e0d513/sensors-21-00402-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa7f/7827243/6285b70e71bb/sensors-21-00402-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa7f/7827243/3040d49fd50f/sensors-21-00402-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa7f/7827243/d1d159e99405/sensors-21-00402-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa7f/7827243/9f7b0f5cc04e/sensors-21-00402-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa7f/7827243/8dfd7c097804/sensors-21-00402-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa7f/7827243/dbb7fa674609/sensors-21-00402-g017a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa7f/7827243/ebc32ce1a388/sensors-21-00402-g018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa7f/7827243/f633e9292e03/sensors-21-00402-g019.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa7f/7827243/b98a88db1b1a/sensors-21-00402-g020.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa7f/7827243/f4d4b580b42b/sensors-21-00402-g021.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa7f/7827243/313e392f9a46/sensors-21-00402-g022.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa7f/7827243/a98c33324923/sensors-21-00402-g023.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa7f/7827243/2f8bbf380eac/sensors-21-00402-g024.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa7f/7827243/f345c0f84dd8/sensors-21-00402-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa7f/7827243/92cd678d5983/sensors-21-00402-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa7f/7827243/06b839467ab9/sensors-21-00402-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa7f/7827243/0fde3b8a4f1a/sensors-21-00402-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa7f/7827243/5fd104581cba/sensors-21-00402-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa7f/7827243/c9614ba32cc8/sensors-21-00402-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa7f/7827243/dcc06b6fdcd5/sensors-21-00402-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa7f/7827243/35ad2f4136ad/sensors-21-00402-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa7f/7827243/a4d6a7d59404/sensors-21-00402-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa7f/7827243/8bf2ac50c14f/sensors-21-00402-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa7f/7827243/302c10e0d513/sensors-21-00402-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa7f/7827243/6285b70e71bb/sensors-21-00402-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa7f/7827243/3040d49fd50f/sensors-21-00402-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa7f/7827243/d1d159e99405/sensors-21-00402-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa7f/7827243/9f7b0f5cc04e/sensors-21-00402-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa7f/7827243/8dfd7c097804/sensors-21-00402-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa7f/7827243/dbb7fa674609/sensors-21-00402-g017a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa7f/7827243/ebc32ce1a388/sensors-21-00402-g018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa7f/7827243/f633e9292e03/sensors-21-00402-g019.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa7f/7827243/b98a88db1b1a/sensors-21-00402-g020.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa7f/7827243/f4d4b580b42b/sensors-21-00402-g021.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa7f/7827243/313e392f9a46/sensors-21-00402-g022.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa7f/7827243/a98c33324923/sensors-21-00402-g023.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa7f/7827243/2f8bbf380eac/sensors-21-00402-g024.jpg

相似文献

[1]
The Overview of Human Localization and Vital Sign Signal Measurement Using Handheld IR-UWB Through-Wall Radar.

Sensors (Basel). 2021-1-8

[2]
An Overview of Signal Processing Techniques for Remote Health Monitoring Using Impulse Radio UWB Transceiver.

Sensors (Basel). 2020-4-27

[3]
A Detailed Algorithm for Vital Sign Monitoring of a Stationary/Non-Stationary Human through IR-UWB Radar.

Sensors (Basel). 2017-2-4

[4]
Experimental Comparison of IR-UWB Radar and FMCW Radar for Vital Signs.

Sensors (Basel). 2020-11-23

[5]
Short-Range Vital Signs Sensing Based on EEMD and CWT Using IR-UWB Radar.

Sensors (Basel). 2016-11-30

[6]
Body Orientation and Vital Sign Measurement With IR-UWB Radar Network.

Annu Int Conf IEEE Eng Med Biol Soc. 2020-7

[7]
Contactless Simultaneous Breathing and Heart Rate Detections in Physical Activity Using IR-UWB Radars.

Sensors (Basel). 2021-8-16

[8]
A Non-Contact Detection Method for Multi-Person Vital Signs Based on IR-UWB Radar.

Sensors (Basel). 2022-8-16

[9]
IR-UWB Pulse Generation Using FPGA Scheme for through Obstacle Human Detection.

Sensors (Basel). 2020-7-4

[10]
Preclinical Evaluation of a Noncontact Simultaneous Monitoring Method for Respiration and Carotid Pulsation Using Impulse-Radio Ultra-Wideband Radar.

Sci Rep. 2019-8-15

引用本文的文献

[1]
Feasibility of Early Assessment for Psychological Distress: HRV-Based Evaluation Using IR-UWB Radar.

Sensors (Basel). 2024-9-25

[2]
HomeOSD: Appliance Operating-Status Detection Using mmWave Radar.

Sensors (Basel). 2024-5-2

[3]
A novel target state detection method for accurate cardiopulmonary signal extraction based on FMCW radar signals.

Front Physiol. 2023-6-26

[4]
Positioning and Tracking of Multiple Humans Moving in Small Rooms Based on a One-Transmitter-Two-Receiver UWB Radar Configuration.

Sensors (Basel). 2022-7-13

[5]
Human Being Detection from UWB NLOS Signals: Accuracy and Generality of Advanced Machine Learning Models.

Sensors (Basel). 2022-2-20

[6]
Design of a Millimeter-Wave Radar Remote Monitoring System for the Elderly Living Alone Using WIFI Communication.

Sensors (Basel). 2021-11-26

本文引用的文献

[1]
An Overview of Signal Processing Techniques for Remote Health Monitoring Using Impulse Radio UWB Transceiver.

Sensors (Basel). 2020-4-27

[2]
Human Vital Signs Detection Methods and Potential Using Radars: A Review.

Sensors (Basel). 2020-3-6

[3]
Review-Microwave Radar Sensing Systems for Search and Rescue Purposes.

Sensors (Basel). 2019-6-28

[4]
A Review on Methods for Random Motion Detection and Compensation in Bio-Radar Systems.

Sensors (Basel). 2019-1-31

[5]
Ultra-Wideband Impulse Radar Through-Wall Detection of Vital Signs.

Sci Rep. 2018-9-6

[6]
An Algorithm Based Wavelet Entropy for Shadowing Effect of Human Detection Using Ultra-Wideband Bio-Radar.

Sensors (Basel). 2017-9-30

[7]
A Detailed Algorithm for Vital Sign Monitoring of a Stationary/Non-Stationary Human through IR-UWB Radar.

Sensors (Basel). 2017-2-4

[8]
Through-Wall Multiple Targets Vital Signs Tracking Based on VMD Algorithm.

Sensors (Basel). 2016-8-15

[9]
Location detection and tracking of moving targets by a 2D IR-UWB radar system.

Sensors (Basel). 2015-3-19

[10]
Techniques for clutter suppression in the presence of body movements during the detection of respiratory activity through UWB radars.

Sensors (Basel). 2014-2-7

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索