Department of Cellular and Molecular Physiology, H166, Penn State College of Medicine, 500 University Drive Hershey, PA 17033, USA.
Department of Ophthalmology, Penn State College of Medicine, 500 University Drive Hershey, PA 17033, USA.
Curr Diabetes Rev. 2022;18(2):e011121190177. doi: 10.2174/1573399817999210111205933.
It is well established that diabetes and its associated hyperglycemia negatively impact retinal function, yet we know little about the role played by augmented flux through the Hexosamine Biosynthetic Pathway (HBP). This offshoot of the glycolytic pathway produces UDP-Nacetyl- glucosamine, which serves as the substrate for post-translational O-linked modification of proteins in a process referred to as O-GlcNAcylation. HBP flux and subsequent protein O-GlcNAcylation serve as nutrient sensors, enabling cells to integrate metabolic information to appropriately modulate fundamental cellular processes including gene expression. Here we summarize the impact of diabetes on retinal physiology, highlighting recent studies that explore the role of O-GlcNAcylation- induced variation in mRNA translation in retinal dysfunction and the pathogenesis of Diabetic Retinopathy (DR). Augmented O-GlcNAcylation results in wide variation in the selection of mRNAs for translation, in part, due to O-GlcNAcylation of the translational repressor 4E-BP1. Recent studies demonstrate that 4E-BP1 plays a critical role in regulating O-GlcNAcylation-induced changes in the translation of the mRNAs encoding Vascular Endothelial Growth Factor (VEGF), a number of important mitochondrial proteins, and CD40, a key costimulatory molecule involved in diabetes-induced retinal inflammation. Remarkably, 4E-BP1/2 ablation delays the onset of diabetes- induced visual dysfunction in mice. Thus, pharmacological interventions to prevent the impact of O-GlcNAcylation on 4E-BP1 may represent promising therapeutics to address the development and progression of DR. In this regard, we discuss the potential interplay between retinal O-GlcNAcylation and the ocular renin-angiotensin system as a potential therapeutic target of future interventions.
已有充分证据表明,糖尿病及其相关的高血糖会对视网膜功能产生负面影响,但我们对己糖胺生物合成途径 (HBP) 通量增加所起的作用知之甚少。这条糖酵解途径的分支产物 UDP-N-乙酰葡萄糖胺可作为蛋白质翻译后 O-连接糖基化修饰的底物,这一过程被称为 O-GlcNAc ylation。HBP 通量和随后的蛋白质 O-GlcNAc ylation 作为营养传感器,使细胞能够整合代谢信息,适当调节包括基因表达在内的基本细胞过程。在这里,我们总结了糖尿病对视网膜生理学的影响,重点介绍了最近的研究探索了 O-GlcNAcylation 诱导的 mRNA 翻译变化在视网膜功能障碍和糖尿病性视网膜病变 (DR) 发病机制中的作用。增强的 O-GlcNAc ylation 导致翻译选择的 mRNA 广泛变化,部分原因是翻译抑制剂 4E-BP1 的 O-GlcNAc ylation。最近的研究表明,4E-BP1 在调节 O-GlcNAc ylation 诱导的翻译变化中起着关键作用,这些变化涉及编码血管内皮生长因子 (VEGF)、一些重要的线粒体蛋白和 CD40 的 mRNA,CD40 是一种参与糖尿病诱导的视网膜炎症的关键共刺激分子。值得注意的是,4E-BP1/2 缺失可延迟糖尿病诱导的视觉功能障碍小鼠的发病。因此,预防 O-GlcNAc ylation 对 4E-BP1 影响的药物干预可能是解决 DR 发展和进展的有前途的治疗方法。在这方面,我们讨论了视网膜 O-GlcNAc ylation 与眼部肾素-血管紧张素系统之间的潜在相互作用,作为未来干预措施的潜在治疗靶点。