Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London SE1 1UL, United Kingdom
Laboratory for Human Neurophysiology and Genetics, South Australian Health and Medical Research Institute (SAHMRI), Adelaide 5000, SA, Australia.
J Neurosci. 2021 Feb 3;41(5):937-946. doi: 10.1523/JNEUROSCI.1653-20.2020. Epub 2021 Jan 11.
Single-cell transcriptomic approaches are revolutionizing neuroscience. Integrating this wealth of data with morphology and physiology, for the comprehensive study of neuronal biology, requires multiplexing gene expression data with complementary techniques. To meet this need, multiple groups in parallel have developed "Patch-seq," a modification of whole-cell patch-clamp protocols that enables mRNA sequencing of cell contents after electrophysiological recordings from individual neurons and morphologic reconstruction of the same cells. In this review, we first outline the critical technical developments that enabled robust Patch-seq experimental efforts and analytical solutions to interpret the rich multimodal data generated. We then review recent applications of Patch-seq that address novel and long-standing questions in neuroscience. These include the following: (1) targeted study of specific neuronal populations based on their anatomic location, functional properties, lineage, or a combination of these factors; (2) the compilation and integration of multimodal cell type atlases; and (3) the investigation of the molecular basis of morphologic and functional diversity. Finally, we highlight potential opportunities for further technical development and lines of research that may benefit from implementing the Patch-seq technique. As a multimodal approach at the intersection of molecular neurobiology and physiology, Patch-seq is uniquely positioned to directly link gene expression to brain function.
单细胞转录组学方法正在引发神经科学的革命。为了全面研究神经元生物学,需要将这些丰富的数据与形态和生理学相结合,这就需要将基因表达数据与互补技术进行多重组合。为了满足这一需求,多个研究小组并行开发了“Patch-seq”,这是全细胞膜片钳方案的一种改进,它能够在对单个神经元进行电生理记录后对细胞内容物进行 mRNA 测序,并对相同的细胞进行形态重建。在这篇综述中,我们首先概述了实现稳健的 Patch-seq 实验努力的关键技术发展,以及解释所产生的丰富多模态数据的分析解决方案。然后,我们回顾了 Patch-seq 的最新应用,这些应用解决了神经科学中的新问题和长期存在的问题。其中包括以下几个方面:(1)基于其解剖位置、功能特性、谱系或这些因素的组合,对特定神经元群体进行有针对性的研究;(2)多模态细胞类型图谱的编译和整合;(3)研究形态和功能多样性的分子基础。最后,我们强调了进一步进行技术开发和实施 Patch-seq 技术可能受益的研究方向的潜在机会。作为分子神经生物学和生理学交叉点的多模态方法,Patch-seq 具有独特的优势,可以将基因表达与大脑功能直接联系起来。