Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Room 56-341B, Cambridge, MA, 02139, USA.
Sci Rep. 2021 Jan 11;11(1):342. doi: 10.1038/s41598-020-77644-4.
Establishing robust genome engineering methods in the malarial parasite, Plasmodium falciparum, has the potential to substantially improve the efficiency with which we gain understanding of this pathogen's biology to propel treatment and elimination efforts. Methods for manipulating gene expression and engineering the P. falciparum genome have been validated. However, a significant barrier to fully leveraging these advances is the difficulty associated with assembling the extremely high AT content DNA constructs required for modifying the P. falciparum genome. These are frequently unstable in commonly-used circular plasmids. We address this bottleneck by devising a DNA assembly framework leveraging the improved reliability with which large AT-rich regions can be efficiently manipulated in linear plasmids. This framework integrates several key functional genetics outcomes via CRISPR/Cas9 and other methods from a common, validated framework. Overall, this molecular toolkit enables P. falciparum genetics broadly and facilitates deeper interrogation of parasite genes involved in diverse biological processes.
在疟原虫(Plasmodium falciparum)中建立稳健的基因组工程方法,有可能极大地提高我们对该病原体生物学的理解效率,从而推动治疗和消除工作。已经验证了用于操纵基因表达和工程化疟原虫基因组的方法。然而,充分利用这些进展的一个重大障碍是,与修饰疟原虫基因组所需的极高 AT 含量 DNA 构建体的组装相关的困难。这些在常用的圆形质粒中经常不稳定。我们通过设计一种 DNA 组装框架来解决这个瓶颈,该框架利用在线性质粒中高效处理大 AT 丰富区域的可靠性提高。该框架通过 CRISPR/Cas9 以及其他方法从一个共同的、经过验证的框架中集成了几个关键的功能遗传学结果。总体而言,这个分子工具包使疟原虫遗传学广泛应用,并促进了对涉及多种生物过程的寄生虫基因的更深入研究。