Suppr超能文献

三维平行 RESOLFT 显微镜的容积活细胞成像。

Volumetric live cell imaging with three-dimensional parallelized RESOLFT microscopy.

机构信息

Department of Applied Physics and Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden.

Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden.

出版信息

Nat Biotechnol. 2021 May;39(5):609-618. doi: 10.1038/s41587-020-00779-2. Epub 2021 Jan 11.

Abstract

Elucidating the volumetric architecture of organelles and molecules inside cells requires microscopy methods with a sufficiently high spatial resolution in all three dimensions. Current methods are limited by insufficient resolving power along the optical axis, long recording times and photobleaching when applied to live cell imaging. Here, we present a 3D, parallelized, reversible, saturable/switchable optical fluorescence transition (3D pRESOLFT) microscope capable of delivering sub-80-nm 3D resolution in whole living cells. We achieved rapid (1-2 Hz) acquisition of large fields of view (~40 × 40 µm) by highly parallelized image acquisition with an interference pattern that creates an array of 3D-confined and equally spaced intensity minima. This allowed us to reversibly turn switchable fluorescent proteins to dark states, leading to a targeted 3D confinement of fluorescence. We visualized the 3D organization and dynamics of organelles in living cells and volumetric structural alterations of synapses during plasticity in cultured hippocampal neurons.

摘要

阐明细胞内细胞器和分子的体积结构需要在所有三个维度上具有足够高空间分辨率的显微镜方法。当前的方法受到沿光轴的分辨率不足、长时间记录和在用于活细胞成像时的光漂白的限制。在这里,我们提出了一种 3D、并行、可逆、可饱和/可切换的光学荧光跃迁(3D pRESOLFT)显微镜,能够在整个活细胞中提供亚 80nm 的 3D 分辨率。我们通过使用干涉图案进行高度并行的图像采集来实现快速(1-2 Hz)获取大视场(约 40×40µm),该干涉图案创建了一系列 3D 受限且等间距的强度最小值。这使我们能够可逆地将可切换荧光蛋白转换为暗状态,从而实现荧光的靶向 3D 限制。我们在培养的海马神经元中可视化了活细胞中细胞器的 3D 组织和动态以及可塑性过程中突触的体积结构改变。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验