Suppr超能文献

基于氟-硫取代反应的无位阻生物正交乙酰化底物标记。

Steric-Free Bioorthogonal Labeling of Acetylation Substrates Based on a Fluorine-Thiol Displacement Reaction.

机构信息

Department of Chemistry, Temple University, 1901 N. 13th Street, Philadelphia, Pennsylvania 19122, United States.

Proteomics and Metabolomics Facility, The Wistar Institute, Philadelphia, Pennsylvania 19104, United States.

出版信息

J Am Chem Soc. 2021 Jan 27;143(3):1341-1347. doi: 10.1021/jacs.0c05605. Epub 2021 Jan 12.

Abstract

We have developed a novel bioorthogonal reaction that can selectively displace fluorine substitutions alpha to amide bonds. This fluorine-thiol displacement reaction (FTDR) allows for fluorinated cofactors or precursors to be utilized as chemical reporters, hijacking acetyltransferase-mediated acetylation both in vitro and in live cells, which cannot be achieved with azide- or alkyne-based chemical reporters. The fluoroacetamide labels can be further converted to biotin or fluorophore tags using FTDR, enabling the general detection and imaging of acetyl substrates. This strategy may lead to a steric-free labeling platform for substrate proteins, expanding our chemical toolbox for functional annotation of post-translational modifications in a systematic manner.

摘要

我们开发了一种新颖的生物正交反应,可以选择性地取代酰胺键α位的氟取代基。这种氟-硫取代反应(FTDR)可以将氟化辅助因子或前体用作化学报告物,劫持乙酰转移酶介导的体外和活细胞中的乙酰化,这是无法用叠氮化物或炔烃基化学报告物实现的。氟乙酰胺标记物可以进一步通过 FTDR 转化为生物素或荧光团标记物,从而能够普遍检测和成像乙酰化底物。该策略可能会为底物蛋白提供一个无空间位阻的标记平台,以系统的方式扩展我们用于翻译后修饰功能注释的化学工具包。

相似文献

1
Steric-Free Bioorthogonal Labeling of Acetylation Substrates Based on a Fluorine-Thiol Displacement Reaction.
J Am Chem Soc. 2021 Jan 27;143(3):1341-1347. doi: 10.1021/jacs.0c05605. Epub 2021 Jan 12.
2
The fluorescence-based acetylation assay using thiol-sensitive probes.
Methods Mol Biol. 2013;981:229-38. doi: 10.1007/978-1-62703-305-3_18.
3
Labeling lysine acetyltransferase substrates with engineered enzymes and functionalized cofactor surrogates.
J Am Chem Soc. 2013 May 29;135(21):7791-4. doi: 10.1021/ja311636b. Epub 2013 May 16.
6
Bioorthogonal Reporters for Detecting and Profiling Protein Acetylation and Acylation.
SLAS Discov. 2020 Feb;25(2):148-162. doi: 10.1177/2472555219887144. Epub 2019 Nov 11.
7
From mechanism to mouse: a tale of two bioorthogonal reactions.
Acc Chem Res. 2011 Sep 20;44(9):666-76. doi: 10.1021/ar200148z. Epub 2011 Aug 15.
8
Identification of lysine acetyltransferase p300 substrates using 4-pentynoyl-coenzyme A and bioorthogonal proteomics.
Bioorg Med Chem Lett. 2011 Sep 1;21(17):4976-9. doi: 10.1016/j.bmcl.2011.05.060. Epub 2011 May 25.
9
A fluorogenic TMP-tag for high signal-to-background intracellular live cell imaging.
ACS Chem Biol. 2013 Aug 16;8(8):1704-12. doi: 10.1021/cb300657r. Epub 2013 Jun 19.
10
A density functional theory study on the role of His-107 in arylamine N-acetyltransferase 2 acetylation.
Biophys Chem. 2006 Aug 1;122(3):215-20. doi: 10.1016/j.bpc.2006.03.011. Epub 2006 Mar 27.

引用本文的文献

1
Biotin-Initiated Poly(oxazoline)s.
Macromolecules. 2024 Jul 9;57(13):6354-6361. doi: 10.1021/acs.macromol.4c00324. Epub 2024 Jun 24.
3
Metabolic Probing of Sialylated Glycoconjugates with Fluorine-Selenol Displacement Reaction (FSeDR).
ACS Bio Med Chem Au. 2024 Dec 9;5(1):119-130. doi: 10.1021/acsbiomedchemau.4c00084. eCollection 2025 Feb 19.
4
Advanced reactivity-based sequencing methods for mRNA epitranscriptome profiling.
RSC Chem Biol. 2024 Dec 10;6(2):150-169. doi: 10.1039/d4cb00215f. eCollection 2025 Feb 5.
6
Synthetic Advantages of Defluorinative C-F Bond Functionalization.
Angew Chem Int Ed Engl. 2023 Dec 4;62(49):e202308880. doi: 10.1002/anie.202308880. Epub 2023 Sep 14.
7
Promiscuous Enzymes for Residue-Specific Peptide and Protein Late-Stage Functionalization.
Chembiochem. 2023 Sep 1;24(17):e202300372. doi: 10.1002/cbic.202300372. Epub 2023 Jul 19.
8
Fluorine-thiol displacement probes for acetaminophen's hepatotoxicity.
Acta Pharm Sin B. 2023 Jan;13(1):204-212. doi: 10.1016/j.apsb.2022.08.003. Epub 2022 Aug 12.
9
Fluorinated Protein and Peptide Materials for Biomedical Applications.
Pharmaceuticals (Basel). 2022 Sep 28;15(10):1201. doi: 10.3390/ph15101201.
10
Molecular probes for cellular imaging of post-translational proteoforms.
RSC Chem Biol. 2022 Jan 4;3(2):201-219. doi: 10.1039/d1cb00190f. eCollection 2022 Feb 9.

本文引用的文献

1
A novel histone acetyltransferase inhibitor A485 improves sensitivity of non-small-cell lung carcinoma cells to TRAIL.
Biochem Pharmacol. 2020 May;175:113914. doi: 10.1016/j.bcp.2020.113914. Epub 2020 Mar 12.
2
Histone acetyltransferase promotes fluoride toxicity in LS8 cells.
Chemosphere. 2020 May;247:125825. doi: 10.1016/j.chemosphere.2020.125825. Epub 2020 Jan 3.
3
Identification of histone acetylation markers in human fetal brains and increased H4K5ac expression in neural tube defects.
Mol Genet Genomic Med. 2019 Dec;7(12):e1002. doi: 10.1002/mgg3.1002. Epub 2019 Oct 14.
4
5
Analysis of human acetylation stoichiometry defines mechanistic constraints on protein regulation.
Nat Commun. 2019 Mar 5;10(1):1055. doi: 10.1038/s41467-019-09024-0.
6
Anacardic acid attenuates pressure-overload cardiac hypertrophy through inhibiting histone acetylases.
J Cell Mol Med. 2019 Apr;23(4):2744-2752. doi: 10.1111/jcmm.14181. Epub 2019 Feb 3.
7
The Future of Bioorthogonal Chemistry.
ACS Cent Sci. 2018 Aug 22;4(8):952-959. doi: 10.1021/acscentsci.8b00251. Epub 2018 Jul 23.
8
Spotlight on protein N-terminal acetylation.
Exp Mol Med. 2018 Jul 27;50(7):1-13. doi: 10.1038/s12276-018-0116-z.
9
Time-Resolved Analysis Reveals Rapid Dynamics and Broad Scope of the CBP/p300 Acetylome.
Cell. 2018 Jun 28;174(1):231-244.e12. doi: 10.1016/j.cell.2018.04.033. Epub 2018 May 24.
10
p300-Mediated Lysine 2-Hydroxyisobutyrylation Regulates Glycolysis.
Mol Cell. 2018 May 17;70(4):663-678.e6. doi: 10.1016/j.molcel.2018.04.011.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验