Suppr超能文献

堆叠自动编码器作为一种新模型,用于使用静息态 EEG 和 MRI 测量来进行准确的阿尔茨海默病分类支持。

Stacked autoencoders as new models for an accurate Alzheimer's disease classification support using resting-state EEG and MRI measurements.

机构信息

Department of Neurology I.C., Oasi Research Institute - IRCCS, Troina, Italy.

Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Rome, Italy; Hospital San Raffaele Cassino, Cassino (FR), Italy.

出版信息

Clin Neurophysiol. 2021 Jan;132(1):232-245. doi: 10.1016/j.clinph.2020.09.015. Epub 2020 Oct 15.

Abstract

OBJECTIVE

This retrospective and exploratory study tested the accuracy of artificial neural networks (ANNs) at detecting Alzheimer's disease patients with dementia (ADD) based on input variables extracted from resting-state electroencephalogram (rsEEG), structural magnetic resonance imaging (sMRI) or both.

METHODS

For the classification exercise, the ANNs had two architectures that included stacked (autoencoding) hidden layers recreating input data in the output. The classification was based on LORETA source estimates from rsEEG activity recorded with 10-20 montage system (19 electrodes) and standard sMRI variables in 89 ADD and 45 healthy control participants taken from a national database.

RESULTS

The ANN with stacked autoencoders and a deep leaning model representing both ADD and control participants showed classification accuracies in discriminating them of 80%, 85%, and 89% using rsEEG, sMRI, and rsEEG + sMRI features, respectively. The two ANNs with stacked autoencoders and a deep leaning model specialized for either ADD or control participants showed classification accuracies of 77%, 83%, and 86% using the same input features.

CONCLUSIONS

The two architectures of ANNs using stacked (autoencoding) hidden layers consistently reached moderate to high accuracy in the discrimination between ADD and healthy control participants as a function of the rsEEG and sMRI features employed.

SIGNIFICANCE

The present results encourage future multi-centric, prospective and longitudinal cross-validation studies using high resolution EEG techniques and harmonized clinical procedures towards clinical applications of the present ANNs.

摘要

目的

本回顾性探索性研究旨在测试人工神经网络(ANNs)基于静息态脑电图(rsEEG)、结构磁共振成像(sMRI)或两者的输入变量,检测痴呆性阿尔茨海默病患者(ADD)的准确性。

方法

在分类练习中,ANNs 具有两种架构,包括堆叠(自编码)隐藏层,以在输出中重新创建输入数据。分类基于 rsEEG 活动的 LORETA 源估计,该活动使用 10-20 导联系统(19 个电极)记录,并结合来自国家数据库的 89 名 ADD 和 45 名健康对照参与者的标准 sMRI 变量。

结果

具有堆叠自编码器和代表 ADD 和对照参与者的深度学习模型的 ANN 分别使用 rsEEG、sMRI 和 rsEEG+sMRI 特征,在区分它们时的分类准确率为 80%、85%和 89%。具有堆叠自编码器和专门针对 ADD 或对照参与者的深度学习模型的两个 ANN,使用相同的输入特征,分类准确率分别为 77%、83%和 86%。

结论

两种使用堆叠(自编码)隐藏层的 ANN 架构在 rsEEG 和 sMRI 特征的作用下,在 ADD 和健康对照参与者之间的区分中始终达到中等至高度的准确性。

意义

本研究结果鼓励未来使用高分辨率 EEG 技术和协调的临床程序进行多中心、前瞻性和纵向交叉验证研究,以推动本 ANN 的临床应用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验