Suppr超能文献

结合集成学习与生成对抗网络的深度卷积神经网络用于阿尔茨海默病图像数据分类

Deep Convolutional Neural Networks With Ensemble Learning and Generative Adversarial Networks for Alzheimer's Disease Image Data Classification.

作者信息

Logan Robert, Williams Brian G, Ferreira da Silva Maria, Indani Akash, Schcolnicov Nicolas, Ganguly Anjali, Miller Sean J

机构信息

Pluripotent Diagnostics Corp. (PDx), Molecular Medicine Research Institute, Sunnyvale, CA, United States.

Eastern Nazarene College, Quincy, MA, United States.

出版信息

Front Aging Neurosci. 2021 Aug 17;13:720226. doi: 10.3389/fnagi.2021.720226. eCollection 2021.

Abstract

Recent advancements in deep learning (DL) have made possible new methodologies for analyzing massive datasets with intriguing implications in healthcare. Convolutional neural networks (CNN), which have proven to be successful supervised algorithms for classifying imaging data, are of particular interest in the neuroscience community for their utility in the classification of Alzheimer's disease (AD). AD is the leading cause of dementia in the aging population. There remains a critical unmet need for early detection of AD pathogenesis based on non-invasive neuroimaging techniques, such as magnetic resonance imaging (MRI) and positron emission tomography (PET). In this comprehensive review, we explore potential interdisciplinary approaches for early detection and provide insight into recent advances on AD classification using 3D CNN architectures for multi-modal PET/MRI data. We also consider the application of generative adversarial networks (GANs) to overcome pitfalls associated with limited data. Finally, we discuss increasing the robustness of CNNs by combining them with ensemble learning (EL).

摘要

深度学习(DL)的最新进展使得分析海量数据集的新方法成为可能,这些方法在医疗保健领域具有引人关注的意义。卷积神经网络(CNN)已被证明是用于成像数据分类的成功监督算法,因其在阿尔茨海默病(AD)分类中的效用而在神经科学界备受关注。AD是老年人群痴呆的主要原因。基于非侵入性神经成像技术,如磁共振成像(MRI)和正电子发射断层扫描(PET),对AD发病机制进行早期检测仍存在关键的未满足需求。在这篇全面综述中,我们探索早期检测的潜在跨学科方法,并深入了解使用3D CNN架构对多模态PET/MRI数据进行AD分类的最新进展。我们还考虑应用生成对抗网络(GAN)来克服与数据有限相关的缺陷。最后,我们讨论通过将CNN与集成学习(EL)相结合来提高其鲁棒性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b53/8416107/4aaf566c5bf8/fnagi-13-720226-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验