Sofiya M, Arulmozhi M
Department of Petrochemical Technology, University College of Engineering (BIT Campus), Anna University, Tiruchirappalli, 620024, Tamilnadu, India.
Sci Rep. 2025 Jul 1;15(1):21801. doi: 10.1038/s41598-025-06975-x.
In recent years, smart agricultural environments have gained attention for enhancing farming efficiency and productivity. These systems use smart sensors integrated with Internet of Things (IoT) devices to collect data such as temperature, soil moisture, and humidity, helping to improve yield and optimize water usage. However, high data traffic during IoT-based data collection often delays access to vital information. A key challenge is identifying and eliminating redundant traffic. Existing methods fail to analyze the marginal rate of traffic features, leading to reduced performance. This research proposes a Multiscale Spatial Recurrent Neural Network (MSRNNet) to classify IoT traffic and enhance smart agriculture systems. After data collection, Box-Plot Normalization (BPN) is applied for preprocessing. The Exhaustive Traffic Information Rate (ETIR) method evaluates the marginal rate of each feature, and the AntLion Behavior Optimization (ALBO) algorithm selects the most significant features, reducing dimensionality. The optimized dataset is then classified using the MSRNNet. Simulations using Python 3.9 and the Anaconda toolkit show the proposed model achieves 97.08% accuracy, 96.05% precision, 94.25% recall, and a 95.71% F1-score, with a low misclassification rate of 1.25% and a time complexity of 85.49 ms, demonstrating its effectiveness and reliability.
近年来,智能农业环境因提高农业效率和生产力而受到关注。这些系统使用与物联网(IoT)设备集成的智能传感器来收集温度、土壤湿度和湿度等数据,有助于提高产量并优化用水。然而,基于物联网的数据收集过程中的高数据流量常常延迟对关键信息的访问。一个关键挑战是识别和消除冗余流量。现有方法未能分析流量特征的边际率,导致性能下降。本研究提出了一种多尺度空间递归神经网络(MSRNNet)来对物联网流量进行分类并增强智能农业系统。数据收集后,应用盒图归一化(BPN)进行预处理。详尽流量信息率(ETIR)方法评估每个特征的边际率,蚁狮行为优化(ALBO)算法选择最重要的特征,从而降低维度。然后使用MSRNNet对优化后的数据集进行分类。使用Python 3.9和Anaconda工具包进行的模拟表明,所提出的模型实现了97.08%的准确率、96.05%的精确率、94.25%的召回率和95.71%的F1分数,误分类率低至1.25%,时间复杂度为85.49毫秒,证明了其有效性和可靠性。