Department of Atmospheric Science, University of Wyoming, Laramie, WY, USA.
Department of Atmospheric Sciences, Texas A&M University, College Station, TX, USA.
Nat Commun. 2021 Jan 12;12(1):277. doi: 10.1038/s41467-020-20482-9.
Uncertainty in the representation of biomass burning (BB) aerosol composition and optical properties in climate models contributes to a range in modeled aerosol effects on incoming solar radiation. Depending on the model, the top-of-the-atmosphere BB aerosol effect can range from cooling to warming. By relating aerosol absorption relative to extinction and carbonaceous aerosol composition from 12 observational datasets to nine state-of-the-art Earth system models/chemical transport models, we identify varying degrees of overestimation in BB aerosol absorptivity by these models. Modifications to BB aerosol refractive index, size, and mixing state improve the Community Atmosphere Model version 5 (CAM5) agreement with observations, leading to a global change in BB direct radiative effect of -0.07 W m, and regional changes of -2 W m (Africa) and -0.5 W m (South America/Temperate). Our findings suggest that current modeled BB contributes less to warming than previously thought, largely due to treatments of aerosol mixing state.
气候模型中生物质燃烧(BB)气溶胶组成和光学性质的表示存在不确定性,导致模型对入射太阳辐射的气溶胶影响范围存在差异。根据模型的不同,大气顶 BB 气溶胶的影响范围从冷却到变暖不等。通过将来自 12 个观测数据集的气溶胶吸收相对于消光和碳质气溶胶组成与 9 个最先进的地球系统模型/化学输送模型相关联,我们发现这些模型对 BB 气溶胶吸光性存在不同程度的高估。对 BB 气溶胶折射率、大小和混合状态的修改,改善了社区大气模式版本 5(CAM5)与观测结果的一致性,导致 BB 直接辐射效应的全球变化为-0.07 W m,以及非洲的区域变化为-2 W m 和南美洲/温带地区的-0.5 W m。我们的研究结果表明,目前模型化的 BB 对变暖的贡献比之前认为的要小,这主要是由于气溶胶混合状态的处理。