Suppr超能文献

通过环境规律习得的先验知识的群体编码。

Population codes of prior knowledge learned through environmental regularities.

机构信息

Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands.

Vrije Universiteit, Amsterdam, The Netherlands.

出版信息

Sci Rep. 2021 Jan 12;11(1):640. doi: 10.1038/s41598-020-79366-z.

Abstract

How the brain makes correct inferences about its environment based on noisy and ambiguous observations is one of the fundamental questions in Neuroscience. Prior knowledge about the probability with which certain events occur in the environment plays an important role in this process. Humans are able to incorporate such prior knowledge in an efficient, Bayes optimal, way in many situations, but it remains an open question how the brain acquires and represents this prior knowledge. The long time spans over which prior knowledge is acquired make it a challenging question to investigate experimentally. In order to guide future experiments with clear empirical predictions, we used a neural network model to learn two commonly used tasks in the experimental literature (i.e. orientation classification and orientation estimation) where the prior probability of observing a certain stimulus is manipulated. We show that a population of neurons learns to correctly represent and incorporate prior knowledge, by only receiving feedback about the accuracy of their inference from trial-to-trial and without any probabilistic feedback. We identify different factors that can influence the neural responses to unexpected or expected stimuli, and find a novel mechanism that changes the activation threshold of neurons, depending on the prior probability of the encoded stimulus. In a task where estimating the exact stimulus value is important, more likely stimuli also led to denser tuning curve distributions and narrower tuning curves, allocating computational resources such that information processing is enhanced for more likely stimuli. These results can explain several different experimental findings, clarify why some contradicting observations concerning the neural responses to expected versus unexpected stimuli have been reported and pose some clear and testable predictions about the neural representation of prior knowledge that can guide future experiments.

摘要

大脑如何根据嘈杂和模糊的观察结果对环境做出正确的推断,是神经科学的一个基本问题。关于某些事件在环境中发生的概率的先验知识在这个过程中起着重要作用。人类在许多情况下能够以高效、贝叶斯最优的方式将这种先验知识纳入其中,但大脑如何获得和表示这种先验知识仍然是一个悬而未决的问题。由于获得先验知识的时间跨度很长,因此从实验上进行研究是一个具有挑战性的问题。为了用明确的经验预测来指导未来的实验,我们使用神经网络模型来学习实验文献中常用的两个任务(即方向分类和方向估计),其中操纵观察到特定刺激的先验概率。我们表明,通过仅从试次到试次接收关于其推断准确性的反馈,而没有任何概率反馈,神经元群体就学会了正确地表示和整合先验知识。我们确定了影响神经元对意外或预期刺激反应的不同因素,并发现了一种新的机制,该机制根据编码刺激的先验概率改变神经元的激活阈值。在一个估计精确刺激值很重要的任务中,更可能的刺激也导致了更密集的调谐曲线分布和更窄的调谐曲线,从而分配计算资源,以便对更可能的刺激进行增强信息处理。这些结果可以解释几种不同的实验结果,阐明为什么报告了一些关于预期与意外刺激的神经反应的相互矛盾的观察结果,并提出一些关于先验知识的神经表示的明确和可测试的预测,这些预测可以指导未来的实验。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/18ad/7804143/97636c624b43/41598_2020_79366_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验