Suppr超能文献

基于埃和纳米尺度孔的当前及新出现病原体的核酸测序

Ångström- and Nano-scale Pore-Based Nucleic Acid Sequencing of Current and Emergent Pathogens.

作者信息

Shepherd Britney A, Tanjil Md Rubayat-E, Jeong Yunjo, Baloğlu Bilgenur, Liao Jingqiu, Wang Michael Cai

机构信息

Department of Medical Engineering, University of South Florida, 4202 E. Fowler Avenue, Tampa, Florida 33620 USA.

Department of Mechanical Engineering, University of South Florida, 4202 E. Fowler Avenue, Tampa, Florida 33620 USA.

出版信息

MRS Adv. 2020;5(56):2889-2906. doi: 10.1557/adv.2020.402. Epub 2020 Dec 1.

Abstract

State-of-the-art nanopore sequencing enables rapid and real-time identification of novel pathogens, which has wide application in various research areas and is an emerging diagnostic tool for infectious diseases including COVID-19. Nanopore translocation enables de novo sequencing with long reads (> 10 kb) of novel genomes, which has advantages over existing short-read sequencing technologies. Biological nanopore sequencing has already achieved success as a technology platform but it is sensitive to empirical factors such as pH and temperature. Alternatively, ångström- and nano-scale solid-state nanopores, especially those based on two-dimensional (2D) membranes, are promising next-generation technologies as they can surpass biological nanopores in the variety of membrane materials, ease of defining pore morphology, higher nucleotide detection sensitivity, and facilitation of novel and hybrid sequencing modalities. Since the discovery of graphene, atomically-thin 2D materials have shown immense potential for the fabrication of nanopores with well-defined geometry, rendering them viable candidates for nanopore sequencing membranes. Here, we review recent progress and future development trends of 2D materials and their ångström- and nano-scale pore-based nucleic acid (NA) sequencing including fabrication techniques and current and emerging sequencing modalities. In addition, we discuss the current challenges of translocation-based nanopore sequencing and provide an outlook on promising future research directions.

摘要

最先进的纳米孔测序技术能够快速实时鉴定新型病原体,在各个研究领域有着广泛应用,并且是包括新冠病毒肺炎在内的传染病的一种新兴诊断工具。纳米孔易位能够对新基因组进行从头测序,产生长读长(>10 kb),这比现有的短读长测序技术具有优势。生物纳米孔测序作为一种技术平台已经取得成功,但它对诸如pH值和温度等经验因素敏感。另外,埃米级和纳米级固态纳米孔,尤其是基于二维(2D)膜的纳米孔,作为下一代技术很有前景,因为它们在膜材料种类、易于定义孔形态、更高的核苷酸检测灵敏度以及促进新型和混合测序模式等方面能够超越生物纳米孔。自石墨烯被发现以来,原子级薄的二维材料在制造具有明确几何形状的纳米孔方面显示出巨大潜力,使其成为纳米孔测序膜的可行候选材料。在此,我们综述二维材料及其基于埃米级和纳米级孔的核酸(NA)测序的最新进展和未来发展趋势,包括制造技术以及当前和新兴的测序模式。此外,我们讨论基于易位的纳米孔测序当前面临的挑战,并对未来有前景的研究方向进行展望。

相似文献

4
Single-Entity Detection With TEM-Fabricated Nanopores.利用透射电子显微镜制造的纳米孔进行单实体检测。
Front Chem. 2021 May 7;9:664820. doi: 10.3389/fchem.2021.664820. eCollection 2021.
5
Solid-state nanopores towards single-molecule DNA sequencing.固态纳米孔用于单分子 DNA 测序。
J Hum Genet. 2020 Jan;65(1):69-77. doi: 10.1038/s10038-019-0655-8. Epub 2019 Aug 16.
7
Recent Progress in Solid-State Nanopores.固态纳米孔的最新进展。
Adv Mater. 2018 Oct;30(42):e1704680. doi: 10.1002/adma.201704680. Epub 2018 Sep 10.
10
Controllable Shrinking Fabrication of Solid-State Nanopores.固态纳米孔的可控收缩制备
Micromachines (Basel). 2022 Jun 10;13(6):923. doi: 10.3390/mi13060923.

本文引用的文献

6
Origin of nonequilibrium 1/f noise in solid-state nanopores.固态纳米孔中非平衡1/f噪声的起源
Nanoscale. 2020 Apr 28;12(16):8975-8981. doi: 10.1039/c9nr09829a. Epub 2020 Apr 9.
7
Comparing Current Noise in Biological and Solid-State Nanopores.比较生物纳米孔和固态纳米孔中的电流噪声。
ACS Nano. 2020 Feb 25;14(2):1338-1349. doi: 10.1021/acsnano.9b09353. Epub 2020 Feb 17.
9
Transverse Detection of DNA Using a MoS Nanopore.使用 MoS 纳米孔进行 DNA 的横向检测。
Nano Lett. 2019 Dec 11;19(12):9075-9083. doi: 10.1021/acs.nanolett.9b04180. Epub 2019 Nov 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验