Cao Jiao, Liu Hai-Ling, Yang Jin-Mei, Li Zhong-Qiu, Yang Dong-Rui, Ji Li-Na, Wang Kang, Xia Xing-Hua
State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
Department of Chemistry, Shaoxing University, Shaoxing 312000, China.
ACS Sens. 2020 Jul 24;5(7):2198-2204. doi: 10.1021/acssensors.0c00844. Epub 2020 Jul 2.
Conventional ion current-based nanopore techniques that identify single molecules are hampered by limitations of providing only the ionic current information. Here, we introduce a silver nanotriangle-based nanopore (diameter < 50 nm) system for detecting molecule translocation using surface-enhanced Raman scattering. Rhodamine 6G is used as a model molecule to study the effect of an electric field (-1 V) on the mass transport. The four DNA bases also show significantly different SERS signals when they are transported into the plasmonic nanopore. The observations suggest that in the electric field, analyte molecules are driven into the nanopipette through the hot spot of the silver nanopore. The plasmonic nanopore shows great potential as a highly sensitive SERS platform for detecting molecule transport and paves the way for single molecule probing.
传统的基于离子电流的纳米孔技术只能提供离子电流信息,这限制了其识别单分子的能力。在此,我们介绍一种基于银纳米三角形的纳米孔(直径<50nm)系统,用于利用表面增强拉曼散射检测分子转位。罗丹明6G用作模型分子,研究电场(-1V)对质量传输的影响。当四种DNA碱基被转运到等离子体纳米孔中时,它们也显示出显著不同的表面增强拉曼散射信号。这些观察结果表明,在电场中,分析物分子通过银纳米孔的热点被驱动到纳米移液器中。等离子体纳米孔作为检测分子运输的高灵敏度表面增强拉曼散射平台具有巨大潜力,并为单分子探测铺平了道路。