Suppr超能文献

通过更大阳离子和阴离子共掺杂实现应变调控以制备高效稳定的锑基太阳能电池

Strain Tuning via Larger Cation and Anion Codoping for Efficient and Stable Antimony-Based Solar Cells.

作者信息

Nie Riming, Lee Kyoung Su, Hu Manman, Seok Sang Il

机构信息

School of Energy and Chemical Engineering Ulsan National Institute of Science and Technology (UNIST) 50 UNIST-gil Eonyang-eup Ulju-gun Ulsan 44919 Republic of Korea.

出版信息

Adv Sci (Weinh). 2020 Nov 23;8(1):2002391. doi: 10.1002/advs.202002391. eCollection 2020 Jan.

Abstract

Strain induced by lattice distortion is one of the key factors that affect the photovoltaic performance via increasing defect densities. The unsatisfied power conversion efficiencies (PCEs) of solar cells based on antimony chalcogenides (Sb-Chs) are owing to their photoexcited carriers being self-trapped by the distortion of SbS lattice. However, strain behavior in Sb-Chs-based solar cells has not been investigated. Here, strain tuning in Sb-Chs is demonstrated by simultaneously replacing Sb and S with larger Bi and I ions, respectively. Bi/I codoped SbS cells are fabricated using poly[2,6-(4,4-bis(2-ethylhexyl)-4H-cyclopenta[2,1-b;3,4-b']dithiophene)-alt-4,7-(2,1,3-enzothiadiazole)] as the hole-transporting layer. Codoping reduced the bandgap and rendered a bigger tension strain (1.76 × 10) to a relatively smaller compression strain (-1.29 × 10). The 2.5 mol% BiI3 doped SbS cell presented lower trap state energy level than the SbS cell; moreover, this doping amount effectively passivated the trap states. This codoping shows a similar trend even in the low bandgap Sb(SSe) cell, resulting in 7.05% PCE under the standard illumination conditions (100 mW cm), which is one of the top efficiencies in solution processing Sb(SSe) solar cells. Furthermore, the doped cells present higher humidity, thermal and photo stability. This study provides a new strategy for stable Pb-free solar cells.

摘要

由晶格畸变引起的应变是通过增加缺陷密度来影响光伏性能的关键因素之一。基于锑硫属化合物(Sb-Chs)的太阳能电池的功率转换效率(PCE)不理想,这是由于其光激发载流子被SbS晶格畸变自陷所致。然而,基于Sb-Chs的太阳能电池中的应变行为尚未得到研究。在此,通过分别用更大的Bi和I离子同时取代Sb和S来证明Sb-Chs中的应变调节。使用聚[2,6-(4,4-双(2-乙基己基)-4H-环戊并[2,1-b;3,4-b']二噻吩)-alt-4,7-(2,1,3-苯并噻二唑)]作为空穴传输层制备Bi/I共掺杂的SbS电池。共掺杂降低了带隙,并使较大的拉伸应变(1.76×10)变为相对较小的压缩应变(-1.29×10)。2.5 mol% BiI3掺杂的SbS电池呈现出比SbS电池更低的陷阱态能级;此外,该掺杂量有效地钝化了陷阱态。即使在低带隙的Sb(SSe)电池中,这种共掺杂也显示出类似的趋势,在标准光照条件(100 mW cm)下产生了7.05%的PCE,这是溶液处理的Sb(SSe)太阳能电池中的最高效率之一。此外,掺杂后的电池具有更高的湿度、热和光稳定性。该研究为稳定的无铅太阳能电池提供了一种新策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3573/7788500/e6a55a9ee443/ADVS-8-2002391-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验