Suppr超能文献

用于效率超过17%的硫化锑室内光伏的增材制造技术

Additive engineering for SbS indoor photovoltaics with efficiency exceeding 17.

作者信息

Chen Xiao, Shu Xiaoxuan, Zhou Jiacheng, Wan Lei, Xiao Peng, Fu Yuchen, Ye Junzhi, Huang Yi-Teng, Yan Bin, Xue Dingjiang, Chen Tao, Chen Jiejie, Hoye Robert L Z, Zhou Ru

机构信息

School of Electrical Engineering and Automation, Hefei University of Technology, Hefei, 230009, PR China.

Department of Environmental Science and Engineering, Key Laboratory of Urban Pollutant Conversion, University of Science and Technology of China, Hefei, 230009, PR China.

出版信息

Light Sci Appl. 2024 Oct 2;13(1):281. doi: 10.1038/s41377-024-01620-0.

Abstract

Indoor photovoltaics (IPVs) have attracted increasing attention for sustainably powering Internet of Things (IoT) electronics. SbS is a promising IPV candidate material with a bandgap of ~1.75 eV, which is near the optimal value for indoor energy harvesting. However, the performance of SbS solar cells is limited by nonradiative recombination, which is dependent on the quality of the absorber films. Additive engineering is an effective strategy to fine tune the properties of solution-processed films. This work shows that the addition of monoethanolamine (MEA) into the precursor solution allows the nucleation and growth of SbS films to be controlled, enabling the deposition of high-quality SbS absorbers with reduced grain boundary density, optimized band positions, and increased carrier concentration. Complemented with computations, it is revealed that the incorporation of MEA leads to a more efficient and energetically favorable deposition for enhanced heterogeneous nucleation on the substrate, which increases the grain size and accelerates the deposition rate of SbS films. Due to suppressed carrier recombination and improved charge-carrier transport in SbS absorber films, the MEA-modulated SbS solar cell yields a power conversion efficiency (PCE) of 7.22% under AM1.5 G illumination, and an IPV PCE of 17.55% under 1000 lux white light emitting diode (WLED) illumination, which is the highest yet reported for SbS IPVs. Furthermore, we construct high performance large-area SbS IPV minimodules to power IoT wireless sensors, and realize the long-term continuous recording of environmental parameters under WLED illumination in an office. This work highlights the great prospect of SbS photovoltaics for indoor energy harvesting.

摘要

室内光伏(IPV)在为物联网(IoT)电子产品可持续供电方面受到了越来越多的关注。硫化锑(SbS)是一种很有前景的IPV候选材料,其带隙约为1.75电子伏特,接近室内能量收集的最佳值。然而,SbS太阳能电池的性能受到非辐射复合的限制,而非辐射复合取决于吸收层薄膜的质量。添加剂工程是微调溶液处理薄膜性能的有效策略。这项工作表明,向前驱体溶液中添加单乙醇胺(MEA)可以控制SbS薄膜的成核和生长,从而能够沉积高质量的SbS吸收层,降低晶界密度、优化能带位置并提高载流子浓度。通过计算补充发现,MEA的加入导致在衬底上进行更高效且能量上更有利的沉积,以增强异质成核,这增加了SbS薄膜的晶粒尺寸并加快了沉积速率。由于SbS吸收层薄膜中载流子复合受到抑制且电荷载流子传输得到改善,经MEA调制的SbS太阳能电池在AM1.5 G光照下的功率转换效率(PCE)为7.22%,在1000勒克斯白光发光二极管(WLED)光照下的IPV PCE为17.55%,这是迄今为止SbS IPV所报道的最高值。此外,我们构建了高性能大面积SbS IPV微型模块为物联网无线传感器供电,并实现了在办公室WLED光照下环境参数的长期连续记录。这项工作突出了SbS光伏在室内能量收集方面的巨大前景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5eb2/11447099/5a1bdff62714/41377_2024_1620_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验