Research Scholar Department of Computer Applications, B S Abdur Rahman Crescent Institute of Science and Technology, Chennai-600048, India.
Professor Department of Computer Applications, B S Abdur Rahman Crescent Institute of Science and Technology, Chennai-600048, India.
Biomed Phys Eng Express. 2020 Mar 11;6(2):025015. doi: 10.1088/2057-1976/ab5c7c.
This research work explores the Content-Based Medical Image Retrieval system (CBMIR) to categorization and retrieval of different types of common thoracic diseases such as Atelectasis, cardiomegaly, Effusion, Infiltration etc, based on local patch representation of 'Bag of Visual Words' approach, when performing patch-based image representation, the selected patch size has significant impact on image categorization and retrieval process. It is a challenging task in selecting the appropriate patch size to the current experimental dataset. Chest Xray8 medical image database is used, to analyze the impact of different patch size to categorize and retrieval of eight common thorax diseases. 1000 frontal view x-ray images is obtained (100 images from each category and 200 images combination of more than one disease) from the database. Different sizes of image patches (16 × 16 and 32 × 32) and different codebook sizes (500, 1000, 1500, 2000) created to identify best precision and recall values. From the excremental result, 32 × 32 patch size and 1500 codebook size gives the good precision and recall value using Radial Basis Function SVM kernel.
本研究工作探讨了基于内容的医学图像检索系统 (CBMIR),以基于“视觉词汇袋”方法的局部补丁表示来对不同类型的常见胸部疾病(如肺不张、心脏增大、胸腔积液、浸润等)进行分类和检索。在进行基于补丁的图像表示时,选择的补丁大小对图像分类和检索过程有重大影响。选择适当的补丁大小对于当前的实验数据集是一项具有挑战性的任务。本研究使用 Chest Xray8 医学图像数据库,分析不同补丁大小对八种常见胸部疾病的分类和检索的影响。从数据库中获得了 1000 张正面 X 光图像(每个类别 100 张图像,两种以上疾病的组合 200 张图像)。创建了不同大小的图像补丁(16×16 和 32×32)和不同的词汇本大小(500、1000、1500、2000),以确定最佳的精度和召回值。从实验结果可以看出,使用径向基函数 SVM 核时,32×32 补丁大小和 1500 词汇本大小可获得较好的精度和召回值。