Suppr超能文献

基于图块的视觉词汇对胸部疾病的分类和检索:胸部 X 光片研究。

Classification and retrieval of thoracic diseases using patch-based visual words: a study on chest x-rays.

机构信息

Research Scholar Department of Computer Applications, B S Abdur Rahman Crescent Institute of Science and Technology, Chennai-600048, India.

Professor Department of Computer Applications, B S Abdur Rahman Crescent Institute of Science and Technology, Chennai-600048, India.

出版信息

Biomed Phys Eng Express. 2020 Mar 11;6(2):025015. doi: 10.1088/2057-1976/ab5c7c.

Abstract

This research work explores the Content-Based Medical Image Retrieval system (CBMIR) to categorization and retrieval of different types of common thoracic diseases such as Atelectasis, cardiomegaly, Effusion, Infiltration etc, based on local patch representation of 'Bag of Visual Words' approach, when performing patch-based image representation, the selected patch size has significant impact on image categorization and retrieval process. It is a challenging task in selecting the appropriate patch size to the current experimental dataset. Chest Xray8 medical image database is used, to analyze the impact of different patch size to categorize and retrieval of eight common thorax diseases. 1000 frontal view x-ray images is obtained (100 images from each category and 200 images combination of more than one disease) from the database. Different sizes of image patches (16 × 16 and 32 × 32) and different codebook sizes (500, 1000, 1500, 2000) created to identify best precision and recall values. From the excremental result, 32 × 32 patch size and 1500 codebook size gives the good precision and recall value using Radial Basis Function SVM kernel.

摘要

本研究工作探讨了基于内容的医学图像检索系统 (CBMIR),以基于“视觉词汇袋”方法的局部补丁表示来对不同类型的常见胸部疾病(如肺不张、心脏增大、胸腔积液、浸润等)进行分类和检索。在进行基于补丁的图像表示时,选择的补丁大小对图像分类和检索过程有重大影响。选择适当的补丁大小对于当前的实验数据集是一项具有挑战性的任务。本研究使用 Chest Xray8 医学图像数据库,分析不同补丁大小对八种常见胸部疾病的分类和检索的影响。从数据库中获得了 1000 张正面 X 光图像(每个类别 100 张图像,两种以上疾病的组合 200 张图像)。创建了不同大小的图像补丁(16×16 和 32×32)和不同的词汇本大小(500、1000、1500、2000),以确定最佳的精度和召回值。从实验结果可以看出,使用径向基函数 SVM 核时,32×32 补丁大小和 1500 词汇本大小可获得较好的精度和召回值。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验