Suppr超能文献

基于互信息的任务驱动字典学习用于医学图像分类

Task-Driven Dictionary Learning Based on Mutual Information for Medical Image Classification.

作者信息

Diamant Idit, Klang Eyal, Amitai Michal, Konen Eli, Goldberger Jacob, Greenspan Hayit

出版信息

IEEE Trans Biomed Eng. 2017 Jun;64(6):1380-1392. doi: 10.1109/TBME.2016.2605627. Epub 2016 Sep 1.

Abstract

OBJECTIVE

We present a novel variant of the bag-of-visual-words (BoVW) method for automated medical image classification.

METHODS

Our approach improves the BoVW model by learning a task-driven dictionary of the most relevant visual words per task using a mutual information-based criterion. Additionally, we generate relevance maps to visualize and localize the decision of the automatic classification algorithm. These maps demonstrate how the algorithm works and show the spatial layout of the most relevant words.

RESULTS

We applied our algorithm to three different tasks: chest x-ray pathology identification (of four pathologies: cardiomegaly, enlarged mediastinum, right consolidation, and left consolidation), liver lesion classification into four categories in computed tomography (CT) images and benign/malignant clusters of microcalcifications (MCs) classification in breast mammograms. Validation was conducted on three datasets: 443 chest x-rays, 118 portal phase CT images of liver lesions, and 260 mammography MCs. The proposed method improves the classical BoVW method for all tested applications. For chest x-ray, area under curve of 0.876 was obtained for enlarged mediastinum identification compared to 0.855 using classical BoVW (with p-value 0.01). For MC classification, a significant improvement of 4% was achieved using our new approach (with p-value = 0.03). For liver lesion classification, an improvement of 6% in sensitivity and 2% in specificity were obtained (with p-value 0.001).

CONCLUSION

We demonstrated that classification based on informative selected set of words results in significant improvement.

SIGNIFICANCE

Our new BoVW approach shows promising results in clinically important domains. Additionally, it can discover relevant parts of images for the task at hand without explicit annotations for training data. This can provide computer-aided support for medical experts in challenging image analysis tasks.

摘要

目的

我们提出一种用于医学图像自动分类的视觉词袋(BoVW)方法的新颖变体。

方法

我们的方法通过使用基于互信息的准则为每个任务学习最相关视觉词的任务驱动字典来改进BoVW模型。此外,我们生成相关性映射以可视化和定位自动分类算法的决策。这些映射展示了算法的工作方式,并显示了最相关词的空间布局。

结果

我们将算法应用于三个不同任务:胸部X光病理识别(四种病理:心脏肥大、纵隔增宽、右肺实变和左肺实变)、计算机断层扫描(CT)图像中肝脏病变分为四类以及乳腺钼靶中微钙化(MCs)的良性/恶性聚类分类。在三个数据集上进行了验证:443张胸部X光片、118张肝脏病变的门静脉期CT图像和260张乳腺钼靶MCs。对于所有测试应用,所提出的方法改进了经典的BoVW方法。对于胸部X光,在识别纵隔增宽方面,曲线下面积为0.876,而使用经典BoVW为0.855(p值为0.01)。对于MC分类,使用我们的新方法实现了4%的显著提高(p值 = 0.03)。对于肝脏病变分类,敏感性提高了6%,特异性提高了2%(p值0.001)。

结论

我们证明基于信息性选定词集的分类会带来显著改进。

意义

我们的新BoVW方法在临床重要领域显示出有前景的结果。此外,它可以在无需对训练数据进行明确注释的情况下发现与手头任务相关的图像部分。这可以为医学专家在具有挑战性的图像分析任务中提供计算机辅助支持。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验