Suppr超能文献

基于改良的 XCAT 体模,从单次平面治疗图像评估患者数据的 3D 荧光透视图像生成。

Evaluation of 3D fluoroscopic image generation from a single planar treatment image on patient data with a modified XCAT phantom.

机构信息

Brigham and Women's Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA.

出版信息

Phys Med Biol. 2013 Feb 21;58(4):841-58. doi: 10.1088/0031-9155/58/4/841. Epub 2013 Jan 21.

Abstract

Accurate understanding and modeling of respiration-induced uncertainties is essential in image-guided radiotherapy. Explicit modeling of the overall lung motion and interaction among different organs promises to be a useful approach. Recently, preliminary studies on 3D fluoroscopic treatment imaging and tumor localization based on principal component analysis motion models and cost function optimization have shown encouraging results. However, the performance of this technique for varying breathing parameters and under realistic conditions remains unclear and thus warrants further investigation. In this work, we present a systematic evaluation of a 3D fluoroscopic image generation algorithm via two different approaches. In the first approach, the model's accuracy is tested for changing parameters for sinusoidal breathing. These parameters include changing respiratory motion amplitude, period and baseline shift. The effects of setup error, imaging noise and different tumor sizes are also examined. In the second approach, we test the model for anthropomorphic images obtained from a modified XCAT phantom. This set of experiments is important as all the underlying breathing parameters are simultaneously tested, as in realistic clinical conditions. Based on our simulation results for more than 250 s of breathing data for eight different lung patients, the overall tumor localization accuracies of the model in left-right, anterior-posterior and superior-inferior directions are 0.1 ± 0.1, 0.5 ± 0.5 and 0.8 ± 0.8 mm, respectively. 3D tumor centroid localization accuracy is 1.0 ± 0.9 mm.

摘要

准确理解和建模呼吸引起的不确定性是影像引导放射治疗的关键。明确建模整个肺运动和不同器官之间的相互作用有望成为一种有用的方法。最近,基于主成分分析运动模型和成本函数优化的 3D 透视治疗成像和肿瘤定位的初步研究已经取得了令人鼓舞的结果。然而,这种技术对于不同呼吸参数和真实条件下的性能尚不清楚,因此需要进一步研究。在这项工作中,我们通过两种不同的方法对 3D 透视图像生成算法进行了系统评估。在第一种方法中,测试了模型对正弦呼吸变化参数的准确性。这些参数包括改变呼吸运动幅度、周期和基线偏移。还检查了设置误差、成像噪声和不同肿瘤大小的影响。在第二种方法中,我们测试了从修改后的 XCAT 体模获得的拟人图像的模型。这组实验很重要,因为所有的基础呼吸参数都同时进行了测试,就像在现实的临床条件下一样。根据我们对 8 名不同肺部患者超过 250 秒的呼吸数据进行的模拟结果,模型在左右、前后和上下方向上的总体肿瘤定位精度分别为 0.1±0.1、0.5±0.5 和 0.8±0.8mm,3D 肿瘤质心定位精度为 1.0±0.9mm。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c4d/3693749/c365432da8b0/nihms439874f1.jpg

相似文献

引用本文的文献

3
A Technique for Generating Volumetric Cine-Magnetic Resonance Imaging.一种生成容积电影磁共振成像的技术。
Int J Radiat Oncol Biol Phys. 2016 Jun 1;95(2):844-53. doi: 10.1016/j.ijrobp.2016.02.011. Epub 2016 Feb 6.

本文引用的文献

8
Results of a multi-institution deformable registration accuracy study (MIDRAS).多机构形变配准准确性研究(MIDRAS)结果。
Int J Radiat Oncol Biol Phys. 2010 Feb 1;76(2):583-96. doi: 10.1016/j.ijrobp.2009.06.031. Epub 2009 Nov 10.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验