Ahmadi Sara, Desain Peter, Thielen Jordy
Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands.
MindAffect, Ede, Netherlands.
Front Hum Neurosci. 2024 Dec 24;18:1437965. doi: 10.3389/fnhum.2024.1437965. eCollection 2024.
As brain-computer interfacing (BCI) systems transition fromassistive technology to more diverse applications, their speed, reliability, and user experience become increasingly important. Dynamic stopping methods enhance BCI system speed by deciding at any moment whether to output a result or wait for more information. Such approach leverages trial variance, allowing good trials to be detected earlier, thereby speeding up the process without significantly compromising accuracy. Existing dynamic stopping algorithms typically optimize measures such as symbols per minute (SPM) and information transfer rate (ITR). However, these metrics may not accurately reflect system performance for specific applications or user types. Moreover, many methods depend on arbitrary thresholds or parameters that require extensive training data.
We propose a model-based approach that takes advantage of the analytical knowledge that we have about the underlying classification model. By using a risk minimization approach, our model allows precise control over the types of errors and the balance between precision and speed. This adaptability makes it ideal for customizing BCI systems to meet the diverse needs of various applications.
We validate our proposed method on a publicly available dataset, comparing it with established static and dynamic stopping methods. Our results demonstrate that our approach offers a broad range of accuracy-speed trade-offs and achieves higher precision than baseline stopping methods.
随着脑机接口(BCI)系统从辅助技术向更多样化的应用转变,其速度、可靠性和用户体验变得越来越重要。动态停止方法通过在任何时刻决定是输出结果还是等待更多信息来提高BCI系统的速度。这种方法利用了试验方差,使良好的试验能够更早被检测到,从而加快了过程,同时又不会显著降低准确性。现有的动态停止算法通常会优化诸如每分钟符号数(SPM)和信息传输率(ITR)等指标。然而,这些指标可能无法准确反映特定应用或用户类型的系统性能。此外,许多方法依赖于需要大量训练数据的任意阈值或参数。
我们提出了一种基于模型的方法,该方法利用了我们对底层分类模型的分析知识。通过使用风险最小化方法,我们的模型可以对错误类型以及精度和速度之间的平衡进行精确控制。这种适应性使其非常适合定制BCI系统以满足各种应用的多样化需求。
我们在一个公开可用的数据集上验证了我们提出的方法,并将其与既定的静态和动态停止方法进行了比较。我们的结果表明,我们的方法提供了广泛的精度-速度权衡,并且比基线停止方法实现了更高的精度。