Shillingford Cicely, Kim Brandon M, Weck Marcus
Molecular Design Institute and Department of Chemistry, New York University, New York, New York 10003, United States.
ACS Nano. 2021 Jan 26;15(1):1640-1651. doi: 10.1021/acsnano.0c09246. Epub 2021 Jan 13.
Capillary assembly of liquid particles (CALP) is a microfabrication strategy for engineering arbitrarily shaped polymer colloids. The method entails depositing emulsion particles into patterned microarrays within a fluidic cell: coalescence, polymerization, and extraction of the deposited material engender faceted colloids. Herein, the versatility of CALP is demonstrated by using both consecutive assembly and heterogeneous coassembly to engineer geometrically diverse Janus and patchy colloids. Liquid particles (LPs) can be patterned laterally across the plane of the template by manipulating the capillary immersion force, liquid particle hardness, and rate of coalescence. Bilayers of different polymeric LPs and patchy microarrays are fabricated, comprising solid colloids made from various materials including poly(styrene), -styryltrimethoxysilane, and iron oxide. Eleven different structures including concentric Janus squares, triblock ellipsoids, and planar tetramer and pentagonal patchy particles are described. All particles are fluorescently labeled, resist flocculation, withstand extended heating, and endure dispersion in organic solvent. Further crystallization and processing into colloid-based microscale devices is therefore anticipated. Heterogeneous CALP combines top-down microfabrication with bottom-up synthesis to engineer nonequilibrium particle structures that cannot be made with wet chemistry. CALP enables the design and fabrication of colloids with complex internal construction to target hierarchical functional materials. Ultimately, the integration of colloidal building blocks comprising multiple components that are independently addressable is crucial for the development of nano/micromaterials such as filtration devices, sensors, diagnostics, solid-state catalysts, and optical electronics.
液体颗粒的毛细管组装(CALP)是一种用于制造任意形状聚合物胶体的微加工策略。该方法需要将乳液颗粒沉积到流体池中图案化的微阵列中:沉积材料的聚结、聚合和萃取产生多面胶体。在此,通过使用连续组装和异质共组装来制造几何形状多样的Janus和补丁状胶体,证明了CALP的多功能性。通过控制毛细管浸入力、液体颗粒硬度和聚结速率,可以在模板平面上横向图案化液体颗粒(LP)。制造了不同聚合物LP和补丁状微阵列的双层结构,包括由各种材料制成的固体胶体,如聚(苯乙烯)、苯乙烯基三甲氧基硅烷和氧化铁。描述了11种不同的结构,包括同心Janus正方形、三嵌段椭球体以及平面四聚体和五边形补丁状颗粒。所有颗粒都经过荧光标记,抗絮凝,能承受长时间加热,并能在有机溶剂中分散。因此,有望进一步结晶并加工成基于胶体的微尺度器件。异质CALP将自上而下的微加工与自下而上的合成相结合,以制造用湿化学方法无法制造的非平衡颗粒结构。CALP能够设计和制造具有复杂内部结构的胶体,以制备分级功能材料。最终,集成包含多个可独立寻址组件的胶体构建块对于开发纳米/微材料(如过滤装置、传感器、诊断设备、固态催化剂和光电子器件)至关重要。