Jackson Nicolle S, Munkaila Samira, Damaraju Lasya, Weck Marcus
Molecular Design Institute and Department of Chemistry, New York University, New York, New York 10003, United States.
Acc Mater Res. 2024 Feb 22;5(3):249-258. doi: 10.1021/accountsmr.3c00203. eCollection 2024 Mar 22.
For the past decade, the field of colloidal science has expanded the collection of colloidal particles to include an entire library of subunits that can be isotropic or anisotropic in terms of structural morphology or chemical composition. Using anisotropic subunits, the field has assembled a variety of static and dynamic structures. For this Account, we use the umbrella term "dynamic colloids" to describe subunits capable of movement, shape-shifting, or any other type of action in response to a stimulus and "static colloids" to describe those that are unresponsive to such stimuli. We view dynamic colloids as an access point to colloidal machines, a unique and emerging subfield of machines, and colloidal science. The assembly of dynamic subunits into colloidal machines differs from traditional self-assembly only in the final structures assembled, not the methods used. Dynamic assemblies have the capacity to interact with their environment in ways that traditional anisotropic self-assemblies do not. Here, we present the current state of the field of colloidal science toward the introduction of the next wave of colloidal machines. Machines are ubiquitous in nature and synthetic systems, governing every aspect of life. In mechanics, a machine is a device that transmits or modifies force or motion. In biology, nature's machines such as kinesin or ATP synthetase are essential to life. In the synthetic realm, molecular machines and nanomachines, recognized with the Nobel prize, include diverse systems, such as molecular rotors and elevators fabricated using bottom-up synthetic methods. On the microscale, microscopic motors based on microelectromechanical systems (MEMs) have been achieved via top-down methods such as micromachining. On the colloidal scale, machines are conspicuously absent due, in part, to the difficulty in navigating combinatory design spaces. We view colloidal machines (100 nm to 10 μm) as the next line of miniaturization in machines. Due to the bottom-up fabrication methods generally used in creating dynamic colloids, one can achieve complexity at a smaller scale than possible with top-down approaches. The introduction of colloidal scale machines would bridge the gap between the microscopic world with its macroscopic counterparts, the nanoworld with its molecular machines, and the biological world with nature's machinery. Reported colloidal machines to date are apparatuses that consist of multiple components of a single composition of dynamic subunits that come together to perform some work. The next step toward complex colloidal machines is systems containing that come together to act in tandem to perform some work on the surrounding environment. We envision repurposing a library of dynamic particles originally intended to be used as anisotropic subunits into dynamic components of a colloidal machine. Computationally, the idea of colloidal machines has been extensively explored; however, synthetically, there has been limited exploration. In order to implement this existing library into colloidal machines, the key next step is the development of .
在过去十年中,胶体科学领域已将胶体粒子的范畴加以扩展,纳入了一整个亚基库,这些亚基在结构形态或化学成分方面可以是各向同性的或各向异性的。利用各向异性亚基,该领域构建了各种静态和动态结构。在本综述中,我们使用“动态胶体”这一概括性术语来描述能够响应刺激而运动、改变形状或进行任何其他类型作用的亚基,并用“静态胶体”来描述那些对这类刺激无反应的亚基。我们将动态胶体视为通向胶体机器的切入点,胶体机器是机器领域中一个独特且新兴的子领域,也是胶体科学的一部分。将动态亚基组装成胶体机器与传统的自组装仅在最终组装结构上有所不同,而非所使用的方法。动态组装体具有以传统各向异性自组装体所不具备的方式与环境相互作用的能力。在此,我们介绍胶体科学领域在引入下一波胶体机器方面的当前状况。机器在自然界和合成系统中无处不在,支配着生活的方方面面。在力学中,机器是一种传递或改变力或运动的装置。在生物学中,诸如驱动蛋白或ATP合酶等自然界的机器对生命至关重要。在合成领域,获得诺贝尔奖认可的分子机器和纳米机器包括各种不同的系统,例如使用自下而上合成方法制造的分子转子和电梯。在微观尺度上,基于微机电系统(MEMS)的微观马达已通过诸如微加工等自上而下的方法实现。在胶体尺度上,机器却明显缺失,部分原因是在组合设计空间中进行导航存在困难。我们将胶体机器(100纳米至10微米)视为机器小型化的下一个阶段。由于在制造动态胶体时通常采用自下而上的制造方法,人们能够在比自上而下方法更小的尺度上实现复杂性。引入胶体尺度的机器将弥合微观世界与其宏观对应物、纳米世界与其分子机器以及生物世界与其自然界机器之间的差距。迄今为止报道的胶体机器是由单一动态亚基组成的多个组件汇聚在一起以执行某些功能的装置。迈向复杂胶体机器的下一步是包含多个组件协同作用以对周围环境执行某些功能的系统。我们设想将原本打算用作各向异性亚基的动态粒子库重新用作胶体机器的动态组件。在计算方面,胶体机器的概念已得到广泛探索;然而,在合成方面,探索却很有限。为了将这个现有的粒子库应用于胶体机器,关键的下一步是开发……