Division of Otolaryngology, Department of Surgery, University of Wisconsin-Madison, Madison, Wisconsin, United States of America.
Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, United States of America.
PLoS One. 2021 Jan 13;16(1):e0245073. doi: 10.1371/journal.pone.0245073. eCollection 2021.
Current research approaches employ traditional tissue engineering strategies to promote vocal fold (VF) tissue regeneration, whereas recent novel advances seek to use principles of developmental biology to guide tissue generation by mimicking native developmental cues, causing tissue or allogenic/autologous progenitor cells to undergo the regeneration process. To address the paucity of data to direct VF differentiation and subsequent new tissue formation, we characterize structure-proliferation relationships and tissue elastic moduli over embryonic development using a murine model. Growth, cell proliferation, and tissue biomechanics were taken at E13.5, E15.5, E16.5, E18.5, P0, and adult time points. Quadratic growth patterns were found in larynx length, maximum transverse diameter, outer dorsoventral diameter, and VF thickness; internal VF length was found to mature linearly. Cell proliferation measured with EdU in the coronal and transverse planes of the VFs was found to decrease with increasing age. Exploiting atomic force microscopy, we measured significant differences in tissue stiffness across all time points except between E13.5 and E15.5. Taken together, our results indicate that as the VF mature and develop quadratically, there is a concomitant tissue stiffness increase. Greater gains in biomechanical stiffness at later prenatal stages, correlated with reduced cell proliferation, suggest that extracellular matrix deposition may be responsible for VF thickening and increased biomechanical function, and that the onset of biomechanical loading (breathing) may also contribute to increased stiffness. These data provide a profile of VF biomechanical and growth properties that can guide the development of biomechanically-relevant scaffolds and progenitor cell differentiation for VF tissue regeneration.
当前的研究方法采用传统的组织工程策略来促进声带(VF)组织再生,而最近的新进展则试图利用发育生物学原理通过模拟天然发育线索来引导组织生成,促使组织或同种异体/自体祖细胞经历再生过程。为了解决缺乏数据来指导 VF 分化和随后的新组织形成的问题,我们使用鼠模型来描述胚胎发育过程中结构-增殖关系和组织弹性模量。在 E13.5、E15.5、E16.5、E18.5、P0 和成年时间点获取生长、细胞增殖和组织生物力学数据。在喉长度、最大横径、外背-腹直径和 VF 厚度上发现二次生长模式;内部 VF 长度呈线性成熟。通过 EdU 在 VF 的冠状和横切平面上测量的细胞增殖随着年龄的增长而减少。利用原子力显微镜,我们发现除了 E13.5 和 E15.5 之间外,所有时间点的组织硬度都存在显著差异。总之,我们的结果表明,随着 VF 呈二次发育和成熟,组织硬度也随之增加。在后期产前阶段,生物力学硬度的增加与细胞增殖的减少相关,这表明细胞外基质的沉积可能是 VF 增厚和增加生物力学功能的原因,而生物力学负荷(呼吸)的开始也可能导致刚度增加。这些数据提供了 VF 生物力学和生长特性的概况,可以指导具有生物力学相关性的支架和 VF 组织再生的祖细胞分化的发展。