Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK.
Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK.
Cell Rep. 2021 Jan 12;34(2):108615. doi: 10.1016/j.celrep.2020.108615.
Mutations in presenilin 1 (PSEN1) or presenilin 2 (PSEN2), the catalytic subunit of γ-secretase, cause familial Alzheimer's disease (fAD). We hypothesized that mutations in PSEN1 reduce Notch signaling and alter neurogenesis. Expression data from developmental and adult neurogenesis show relative enrichment of Notch and γ-secretase expression in stem cells, whereas expression of APP and β-secretase is enriched in neurons. We observe premature neurogenesis in fAD iPSCs harboring PSEN1 mutations using two orthogonal systems: cortical differentiation in 2D and cerebral organoid generation in 3D. This is partly driven by reduced Notch signaling. We extend these studies to adult hippocampal neurogenesis in mutation-confirmed postmortem tissue. fAD cases show mutation-specific effects and a trend toward reduced abundance of newborn neurons, supporting a premature aging phenotype. Altogether, these results support altered neurogenesis as a result of fAD mutations and suggest that neural stem cell biology is affected in aging and disease.
早老素 1 (PSEN1) 或早老素 2 (PSEN2) 的突变,γ-分泌酶的催化亚基,导致家族性阿尔茨海默病 (fAD)。我们假设 PSEN1 突变会降低 Notch 信号转导并改变神经发生。来自发育和成年神经发生的表达数据显示 Notch 和 γ-分泌酶在干细胞中相对富集,而 APP 和 β-分泌酶的表达在神经元中富集。我们使用两种正交系统观察到携带 PSEN1 突变的 fAD iPSCs 中过早的神经发生:二维皮层分化和三维脑类器官生成。这部分是由 Notch 信号转导减少驱动的。我们将这些研究扩展到突变确认的死后组织中的成年海马神经发生。fAD 病例显示出突变特异性效应和新生神经元丰度降低的趋势,支持过早衰老表型。总的来说,这些结果支持 fAD 突变导致的神经发生改变,并表明神经干细胞生物学在衰老和疾病中受到影响。