Shirinpour Sina, Alekseichuk Ivan, Mantell Kathleen, Opitz Alexander
Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States of America.
J Neural Eng. 2020 Jul 13;17(4):046002. doi: 10.1088/1741-2552/ab9dba.
Real-time approaches for transcranial magnetic stimulation (TMS) based on a specific EEG phase are a promising avenue for more precise neuromodulation interventions. However, optimal approaches to reliably extract the EEG phase in a frequency band of interest to inform TMS are still to be identified. Here, we implement a new real-time phase detection method for closed-loop EEG-TMS for robust phase extraction. We compare this algorithm with state-of-the-art methods and evaluate its performance both in silico and experimentally.
We propose a new robust algorithm (Educated Temporal Prediction) for delivering real-time EEG phase-specific stimulation based on short prerecorded EEG training data. This method estimates the interpeak period from a training period and applies a bias correction to predict future peaks. We compare the accuracy and computation speed of the ETP algorithm with two existing methods (Fourier based, Autoregressive Prediction) using prerecorded resting EEG data and real-time experiments.
We found that Educated Temporal Prediction performs with higher accuracy than Fourier-based or Autoregressive methods both in silico and in vivo while being computationally more efficient. Further, we document the dependency of the EEG signal-to-noise ratio (SNR) on algorithm accuracy across all algorithms.
Our results give important insights for real-time EEG-TMS technical development as well as experimental design. Due to its robustness and computational efficiency, our method can find broad use in experimental research or clinical applications. Through open sharing of code for all three methods, we enable broad access of TMS-EEG real-time algorithms to the community.
基于特定脑电图(EEG)相位的经颅磁刺激(TMS)实时方法是实现更精确神经调节干预的一条有前景的途径。然而,在感兴趣的频带中可靠提取EEG相位以指导TMS的最佳方法仍有待确定。在此,我们为闭环EEG-TMS实现了一种新的实时相位检测方法,用于稳健的相位提取。我们将该算法与现有最先进的方法进行比较,并在计算机模拟和实验中评估其性能。
我们提出了一种新的稳健算法(智能时间预测),用于基于预先录制的短EEG训练数据进行实时EEG特定相位刺激。该方法从训练期估计峰间期,并应用偏差校正来预测未来的峰值。我们使用预先录制的静息EEG数据和实时实验,将ETP算法的准确性和计算速度与两种现有方法(基于傅里叶变换的方法、自回归预测方法)进行比较。
我们发现,智能时间预测在计算机模拟和体内实验中均比基于傅里叶变换的方法或自回归方法具有更高的准确性,同时计算效率更高。此外,我们记录了所有算法中EEG信噪比(SNR)对算法准确性的依赖性。
我们的结果为实时EEG-TMS技术发展以及实验设计提供了重要见解。由于其稳健性和计算效率,我们的方法可在实验研究或临床应用中广泛应用。通过公开共享这三种方法的代码,我们使TMS-EEG实时算法能够被社区广泛使用。