Suppr超能文献

脑电节律的实时应用中的相位估计。

Estimation of phase in EEG rhythms for real-time applications.

机构信息

Department of Biomedical Engineering, Columbia University, New York, NY 10027 United States of America.

出版信息

J Neural Eng. 2020 Jun 2;17(3):034002. doi: 10.1088/1741-2552/ab8683.

Abstract

OBJECTIVE

Estimating the ongoing phase of oscillations in electroencephalography (EEG) recordings is an important aspect of understanding brain function, as well as for the development of phase-dependent closed-loop real-time systems that deliver stimuli. Such stimuli may take the form of direct brain stimulation (for example transcranial magnetic stimulation), or sensory stimuli (for example presentation of an auditory stimulus). We identify two linked problems related to estimating the phase of EEG rhythms with a specific focus on the alpha-band: 1) when the signal after a specific stimulus is unknown (real-time case), or 2) when it is corrupted by the presence of the stimulus itself (offline analysis). We propose methods to estimate the phase at the presentation time of these stimuli.

APPROACH

Machine learning methods are used to learn the causal mapping from an unprocessed EEG recording to a phase estimate generated with a non-causal signal processing chain. This mapping is then used to predict the phase causally where non-causal methods are inappropriate.

MAIN RESULTS

We demonstrate the ability of these machine learning methods to estimate instantaneous phase from an EEG signal subjected to very minor pre-processing with higher accuracy than commonly used signal-processing methods.

SIGNIFICANCE

Neural oscillations have been implicated in a wide variety of sensory, cognitive and motor functions. The instantaneous phase of these rhythms may reflect specific processes of computation which can be acted upon if they can be estimated with sufficient accuracy. Such brain-state dependent paradigms are of increasing medical and scientific interest.

摘要

目的

估计脑电图(EEG)记录中的振荡进行阶段是理解大脑功能的重要方面,也是开发用于传递刺激的与相位相关的闭环实时系统的重要方面。此类刺激可以采取直接脑刺激(例如经颅磁刺激)或感觉刺激(例如听觉刺激的呈现)的形式。我们确定了与估计具有特定重点的 EEG 节律的相位相关的两个相关问题:1)在特定刺激后的信号未知时(实时情况),或 2)在受到刺激本身存在干扰时(离线分析)。我们提出了在这些刺激呈现时估计相位的方法。

方法

使用机器学习方法来学习从未处理的 EEG 记录到使用非因果信号处理链生成的相位估计的因果映射。然后,在不适合使用非因果方法的地方,使用该映射进行因果预测相位。

主要结果

我们证明了这些机器学习方法能够以比常用信号处理方法更高的准确性,从经过非常轻微预处理的 EEG 信号中估计瞬时相位。

意义

神经振荡与广泛的感觉、认知和运动功能有关。这些节律的瞬时相位可能反映了特定的计算过程,如果可以以足够的精度进行估计,则可以对其进行处理。这种基于脑状态的范式越来越受到医学和科学的关注。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验