Department of Chemistry, Majlesi Branch, Islamic Azad University, Majlesi, Iran.
School of Resources and Environment, University of Electronic Science and Technology of China, Xiyuan Ave, Chengdu, 611731, People's Republic of China.
Sci Rep. 2021 Jan 13;11(1):1006. doi: 10.1038/s41598-020-79872-0.
The 1,l/-bis(2-phenylethan-1-ol)ferrocene, 1-butyl-3-methylimidazolium hexafluoro phosphate (BMPF6) and NiO-SWCNTs were used to modify carbon paste electrode (BPOFc/BMPF6/NiO-SWCNTs/CPE), which could act as an electro-catalytic tool for the analysis of N-acetylcysteine in this work. The BPOFc/BMPF6/NiO-SWCNTs/CPE with high electrical conductivity showed two completely separate signals with oxidation potentials of 432 and 970 mV for the first time that is sufficient for the determination of N-acetylcysteine in the presence of theophylline. The BPOFc/BMPF6/NiO-SWCNTs/CPE showed linear dynamic ranges of 0.02-300.0 μM and 1.0-350.0 μM with the detection limit of ~ 8.0 nM and 0.6 μM for the measurement of N-acetylcysteine and theophylline, respectively. In the second part, understanding the nature of interaction, quantum conductance modulation, electronic properties, charge density, and adsorption behavior of N-acetylcysteine on NiO-SWCNTs surface from first-principle studies through the use of theoretical investigation is vital for designing high-performance sensor materials. The N-acetylcysteine molecule was chemisorbed on the NiO-SWCNTs surface by suitable adsorption energies (- 1.102 to - 5.042 eV) and reasonable charge transfer between N-acetylcysteine and NiO-SWCNTs.
1,l/-双(2-苯乙-1-醇)二茂铁、1-丁基-3-甲基咪唑六氟磷酸盐(BMPF6)和 NiO-SWCNTs 被用于修饰碳糊电极(BPOFc/BMPF6/NiO-SWCNTs/CPE),该电极可作为分析 N-乙酰半胱氨酸的电催化工具。BPOFc/BMPF6/NiO-SWCNTs/CPE 具有较高的导电性,首次显示出两个完全分离的信号,其氧化电位分别为 432 mV 和 970 mV,足以在茶碱存在的情况下测定 N-乙酰半胱氨酸。BPOFc/BMPF6/NiO-SWCNTs/CPE 对 N-乙酰半胱氨酸和茶碱的线性检测范围分别为 0.02-300.0 μM 和 1.0-350.0 μM,检测限分别约为 8.0 nM 和 0.6 μM。在第二部分,通过使用理论研究从第一性原理研究中了解 N-乙酰半胱氨酸在 NiO-SWCNTs 表面的相互作用性质、量子电导调制、电子性质、电荷密度和吸附行为,对于设计高性能传感器材料至关重要。N-乙酰半胱氨酸分子通过合适的吸附能(-1.102 至-5.042 eV)和 N-乙酰半胱氨酸与 NiO-SWCNTs 之间合理的电荷转移被化学吸附在 NiO-SWCNTs 表面。