Suppr超能文献

优化的氢质量再分配方案结合准确的温度/压力评估,用于生物系统的热力学和动力学性质。

Optimized Hydrogen Mass Repartitioning Scheme Combined with Accurate Temperature/Pressure Evaluations for Thermodynamic and Kinetic Properties of Biological Systems.

机构信息

Theoretical Molecular Science Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.

Computational Biophysics Research Team, RIKEN Center for Computational Science, 7-1-26 minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.

出版信息

J Chem Theory Comput. 2021 Aug 10;17(8):5312-5321. doi: 10.1021/acs.jctc.1c00185. Epub 2021 Jul 17.

Abstract

In recent years, molecular dynamics (MD) simulations with larger time steps have been performed with the hydrogen-mass-repartitioning (HMR) scheme, where the mass of each hydrogen atom is increased to reduce high-frequency motion while the mass of a non-hydrogen atom bonded to a hydrogen atom is decreased to keep the total molecular mass unchanged. Here, we optimize the scaling factors in HMR and combine them with previously developed accurate temperature/pressure evaluations. The heterogeneous HMR scaling factors are useful to avoid the structural instability of amino acid residues having a five- or six-membered ring in MD simulations with larger time steps. It also reproduces kinetic properties, namely translational and rotational diffusions, if the HMR scaling factors are applied to only solute molecules. The integration scheme is tested for biological systems that include soluble/membrane proteins and lipid bilayers for about 200 μs MD simulations in total and give consistent results in MD simulations with both a small time step of 2.0 fs and a large, multiple time step integration with time steps of 3.5 fs (for fast motions) and 7.0 fs (for slower motions). We also confirm that the multiple time step integration scheme used in this study provides more accurate energy conservations than the RESPA/C1 and is comparable to the RESPA/C2 in NAMD. In summary, the current integration scheme combining the optimized HMR with accurate temperature/pressure evaluations can provide stable and reliable MD trajectories with a larger time step, which are computationally more than 2-fold efficient compared to the conventional methods.

摘要

近年来,已经使用氢质量分配(HMR)方案进行了具有更大时间步长的分子动力学(MD)模拟,其中每个氢原子的质量增加以减少高频运动,而与氢原子键合的非氢原子的质量减小以保持总分子质量不变。在这里,我们优化了 HMR 中的比例因子,并将它们与以前开发的准确温度/压力评估相结合。异质 HMR 比例因子可用于避免在具有更大时间步长的 MD 模拟中具有五或六元环的氨基酸残基的结构不稳定。如果仅将 HMR 比例因子应用于溶质分子,则它还可以再现动力学性质,即平移和旋转扩散。该积分方案已针对包括可溶性/膜蛋白和脂质双层的生物系统进行了测试,总共进行了约 200 μs 的 MD 模拟,并且在具有小时间步长 2.0 fs 和大的多重时间步长积分的 MD 模拟中均给出了一致的结果时间步长为 3.5 fs(用于快速运动)和 7.0 fs(用于较慢运动)。我们还确认,与 RESPA/C1 相比,本研究中使用的多重时间步积分方案提供了更准确的能量守恒,并且与 NAMD 中的 RESPA/C2 相当。总之,当前的集成方案将优化的 HMR 与准确的温度/压力评估相结合,可以提供具有更大时间步长的稳定可靠的 MD 轨迹,与传统方法相比,计算效率提高了 2 倍以上。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验