University of California Berkeley/University of California San Francisco Graduate Group in Bioengineering, Berkeley, CA 94720.
Department of Bioengineering & Biophysics Group, University of California, Berkeley, CA 94720.
Proc Natl Acad Sci U S A. 2021 Jan 5;118(1). doi: 10.1073/pnas.2007526118.
Fusion-associated small transmembrane (FAST) proteins are a diverse family of nonstructural viral proteins. Once expressed on the plasma membrane of infected cells, they drive fusion with neighboring cells, increasing viral spread and pathogenicity. Unlike viral fusogens with tall ectodomains that pull two membranes together through conformational changes, FAST proteins have short fusogenic ectodomains that cannot bridge the intermembrane gap between neighboring cells. One orthoreovirus FAST protein, p14, has been shown to hijack the actin cytoskeleton to drive cell-cell fusion, but the actin adaptor-binding motif identified in p14 is not found in any other FAST protein. Here, we report that an evolutionarily divergent FAST protein, p22 from aquareovirus, also hijacks the actin cytoskeleton but does so through different adaptor proteins, Intersectin-1 and Cdc42, that trigger N-WASP-mediated branched actin assembly. We show that despite using different pathways, the cytoplasmic tail of p22 can replace that of p14 to create a potent chimeric fusogen, suggesting they are modular and play similar functional roles. When we directly couple p22 with the parallel filament nucleator formin instead of the branched actin nucleation promoting factor N-WASP, its ability to drive fusion is maintained, suggesting that localized mechanical pressure on the plasma membrane coupled to a membrane-disruptive ectodomain is sufficient to drive cell-cell fusion. This work points to a common biophysical strategy used by FAST proteins to push rather than pull membranes together to drive fusion, one that may be harnessed by other short fusogens responsible for physiological cell-cell fusion.
融合相关的小跨膜(FAST)蛋白是一类多样化的非结构病毒蛋白家族。一旦在感染细胞的质膜上表达,它们就会驱动与邻近细胞的融合,增加病毒的传播和致病性。与具有高大细胞外域的病毒融合蛋白不同,这些蛋白通过构象变化将两个膜拉在一起,FAST 蛋白的融合细胞外域很短,无法桥接邻近细胞之间的膜间间隙。一种正呼肠孤病毒 FAST 蛋白 p14 已被证明可以劫持肌动蛋白细胞骨架来驱动细胞-细胞融合,但在其他任何 FAST 蛋白中都没有发现 p14 中鉴定出的肌动蛋白衔接蛋白结合基序。在这里,我们报告称,一种进化上分化的 FAST 蛋白,来自 aquareovirus 的 p22,也劫持了肌动蛋白细胞骨架,但它通过不同的衔接蛋白(Intersectin-1 和 Cdc42)来实现,这些蛋白触发 N-WASP 介导的分支肌动蛋白组装。我们表明,尽管使用了不同的途径,p22 的细胞质尾巴可以替代 p14 来创建一种有效的嵌合融合蛋白,这表明它们是模块化的,并且发挥类似的功能作用。当我们直接将 p22 与平行丝核形成因子而不是分支肌动蛋白成核促进因子 N-WASP 偶联时,它驱动融合的能力得以维持,这表明质膜上的局部机械压力与膜破坏的细胞外域相结合足以驱动细胞-细胞融合。这项工作指出了 FAST 蛋白用于推动而不是拉动膜以驱动融合的共同生物物理策略,这可能被其他负责生理细胞-细胞融合的短融合蛋白所利用。