Department of Psychiatry, University of Alberta, Alberta, Canada.
Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou Huiai Hospital, Guangzhou, Guangdong, PR China.
J Affect Disord. 2021 Mar 1;282:662-668. doi: 10.1016/j.jad.2020.12.046. Epub 2020 Dec 18.
Identifying cognitive dysfunction in the early stages of Bipolar Disorder (BD) can allow for early intervention. Previous studies have shown a strong correlation between cognitive dysfunction and number of manic episodes. The objective of this study was to apply machine learning (ML) techniques on a battery of cognitive tests to identify first-episode BD patients (FE-BD). Two cohorts of participants were used for this study. Cohort #1 included 74 chronic BD patients (CHR-BD) and 53 healthy controls (HC), while the Cohort #2 included 37 FE-BD and 18 age- and sex-matched HC. Cognitive functioning was assessed using the Cambridge Neuropsychological Test Automated Battery (CANTAB). The tests examined domains of visual processing, spatial memory, attention and executive function. We trained an ML model to distinguish between chronic BD patients (CHR-BD) and HC at the individual level. We used linear Support Vector Machines (SVM) and were able to identify individual CHR-BD patients at 77% accuracy. We then applied the model to Cohort #2 (FE-BD patients) and achieved an accuracy of 76% (AUC = 0.77). These results reveal that cognitive impairments may appear in early stages of BD and persist into later stages. This suggests that the same deficits may exist for both CHR-BD and FE-BD. These cognitive deficits may serve as markers for early BD. Our study provides a tool that these early markers can be used for detection of BD.
识别双相情感障碍(BD)早期的认知功能障碍可以进行早期干预。先前的研究表明,认知功能障碍与躁狂发作次数之间存在很强的相关性。本研究的目的是应用机器学习(ML)技术对一系列认知测试进行分析,以识别首发躁狂症(FE-BD)患者。本研究使用了两组参与者。队列 #1 包括 74 名慢性 BD 患者(CHR-BD)和 53 名健康对照组(HC),而队列 #2 包括 37 名首发 BD 患者和 18 名年龄和性别匹配的 HC。认知功能使用剑桥神经心理学测试自动化电池(CANTAB)进行评估。测试检查了视觉处理、空间记忆、注意力和执行功能领域。我们训练了一个 ML 模型来区分慢性 BD 患者(CHR-BD)和 HC 在个体水平上。我们使用了线性支持向量机(SVM),能够以 77%的准确率识别出个体 CHR-BD 患者。然后我们将该模型应用于队列 #2(FE-BD 患者),并达到了 76%的准确率(AUC=0.77)。这些结果表明,认知障碍可能出现在 BD 的早期阶段,并持续到后期阶段。这表明相同的缺陷可能存在于 CHR-BD 和 FE-BD 中。这些认知缺陷可能是早期 BD 的标志物。我们的研究提供了一种工具,可以使用这些早期标志物来检测 BD。