Suppr超能文献

使用逐分量梯度提升法来评估认知测量作为小儿双相情感障碍易感性标志物的可能作用。

The use of component-wise gradient boosting to assess the possible role of cognitive measures as markers of vulnerability to pediatric bipolar disorder.

作者信息

Bauer Isabelle E, Suchting Robert, Van Rheenen Tamsyn E, Wu Mon-Ju, Mwangi Benson, Spiker Danielle, Zunta-Soares Giovana B, Soares Jair C

机构信息

a Department of Psychiatry and Behavioral Sciences , The University of Texas Health Science Center at Houston , Houston , TX , USA.

b Melbourne Neuropsychiatry Centre, Level 3 , Carlton , Australia.

出版信息

Cogn Neuropsychiatry. 2019 Mar;24(2):93-107. doi: 10.1080/13546805.2019.1580190. Epub 2019 Feb 18.

Abstract

BACKGROUND AND AIMS

Cognitive impairments are primary hallmarks symptoms of bipolar disorder (BD). Whether these deficits are markers of vulnerability or symptoms of the disease is still unclear. This study used a component-wise gradient (CGB) machine learning algorithm to identify cognitive measures that could accurately differentiate pediatric BD, unaffected offspring of BD parents, and healthy controls.

METHODS

59 healthy controls (HC; 11.19 ± 3.15 yo; 30 girls), 119 children and adolescents with BD (13.31 ± 3.02 yo, 52 girls) and 49 unaffected offspring of BD parents (UO; 9.36 ± 3.18 yo; 22 girls) completed the CANTAB cognitive battery.

RESULTS

CGB achieved accuracy of 73.2% and an AUROC of 0.785 in classifying individuals as either BD or non-BD on a dataset held out for validation for testing. The strongest cognitive predictors of BD were measures of processing speed and affective processing. Measures of cognition did not differentiate between UO and HC.

CONCLUSIONS

Alterations in processing speed and affective processing are markers of BD in pediatric populations. Longitudinal studies should determine whether UO with a cognitive profile similar to that of HC are at less or equal risk for mood disorders. Future studies should include relevant measures for BD such as verbal memory and genetic risk scores.

摘要

背景与目的

认知障碍是双相情感障碍(BD)的主要标志性症状。这些缺陷是易感性的标志物还是疾病的症状仍不清楚。本研究使用逐分量梯度(CGB)机器学习算法来识别能够准确区分小儿双相情感障碍、双相情感障碍父母的未患病后代以及健康对照的认知指标。

方法

59名健康对照(HC;11.19±3.15岁;30名女孩)、119名双相情感障碍儿童和青少年(13.31±3.02岁,52名女孩)以及49名双相情感障碍父母的未患病后代(UO;9.36±3.1·18岁;22名女孩)完成了剑桥神经心理测试自动化成套系统(CANTAB)认知测试。

结果

在用于验证测试的数据集上,CGB将个体分类为双相情感障碍或非双相情感障碍的准确率为73.2%,曲线下面积(AUROC)为0.785。双相情感障碍最强的认知预测指标是处理速度和情感处理指标。认知指标无法区分未患病后代和健康对照。

结论

处理速度和情感处理的改变是小儿双相情感障碍的标志物。纵向研究应确定认知特征与健康对照相似的未患病后代患情绪障碍的风险是否更低或相同。未来的研究应纳入双相情感障碍的相关指标,如言语记忆和遗传风险评分。

相似文献

5
Cognitive deficits in bipolar disorders: Implications for emotion.双相情感障碍中的认知缺陷:对情绪的影响。
Clin Psychol Rev. 2018 Feb;59:126-136. doi: 10.1016/j.cpr.2017.11.006. Epub 2017 Nov 21.
10
Cognitive abilities in first-degree relatives of individuals with bipolar disorder.双相障碍患者一级亲属的认知能力。
J Affect Disord. 2018 Jan 1;225:147-152. doi: 10.1016/j.jad.2017.08.029. Epub 2017 Aug 15.

引用本文的文献

本文引用的文献

3
Machine Learning Approaches for Clinical Psychology and Psychiatry.机器学习在临床心理学和精神病学中的应用。
Annu Rev Clin Psychol. 2018 May 7;14:91-118. doi: 10.1146/annurev-clinpsy-032816-045037. Epub 2018 Jan 29.
4
The Effect of Schooling on Basic Cognition in Selected Nordic Countries.北欧部分国家学校教育对基本认知的影响。
Eur J Psychol. 2017 Nov 30;13(4):645-666. doi: 10.5964/ejop.v13i4.1339. eCollection 2017 Nov.
8
Cognitive abilities in first-degree relatives of individuals with bipolar disorder.双相障碍患者一级亲属的认知能力。
J Affect Disord. 2018 Jan 1;225:147-152. doi: 10.1016/j.jad.2017.08.029. Epub 2017 Aug 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验