Bauer Isabelle E, Suchting Robert, Van Rheenen Tamsyn E, Wu Mon-Ju, Mwangi Benson, Spiker Danielle, Zunta-Soares Giovana B, Soares Jair C
a Department of Psychiatry and Behavioral Sciences , The University of Texas Health Science Center at Houston , Houston , TX , USA.
b Melbourne Neuropsychiatry Centre, Level 3 , Carlton , Australia.
Cogn Neuropsychiatry. 2019 Mar;24(2):93-107. doi: 10.1080/13546805.2019.1580190. Epub 2019 Feb 18.
Cognitive impairments are primary hallmarks symptoms of bipolar disorder (BD). Whether these deficits are markers of vulnerability or symptoms of the disease is still unclear. This study used a component-wise gradient (CGB) machine learning algorithm to identify cognitive measures that could accurately differentiate pediatric BD, unaffected offspring of BD parents, and healthy controls.
59 healthy controls (HC; 11.19 ± 3.15 yo; 30 girls), 119 children and adolescents with BD (13.31 ± 3.02 yo, 52 girls) and 49 unaffected offspring of BD parents (UO; 9.36 ± 3.18 yo; 22 girls) completed the CANTAB cognitive battery.
CGB achieved accuracy of 73.2% and an AUROC of 0.785 in classifying individuals as either BD or non-BD on a dataset held out for validation for testing. The strongest cognitive predictors of BD were measures of processing speed and affective processing. Measures of cognition did not differentiate between UO and HC.
Alterations in processing speed and affective processing are markers of BD in pediatric populations. Longitudinal studies should determine whether UO with a cognitive profile similar to that of HC are at less or equal risk for mood disorders. Future studies should include relevant measures for BD such as verbal memory and genetic risk scores.
认知障碍是双相情感障碍(BD)的主要标志性症状。这些缺陷是易感性的标志物还是疾病的症状仍不清楚。本研究使用逐分量梯度(CGB)机器学习算法来识别能够准确区分小儿双相情感障碍、双相情感障碍父母的未患病后代以及健康对照的认知指标。
59名健康对照(HC;11.19±3.15岁;30名女孩)、119名双相情感障碍儿童和青少年(13.31±3.02岁,52名女孩)以及49名双相情感障碍父母的未患病后代(UO;9.36±3.1·18岁;22名女孩)完成了剑桥神经心理测试自动化成套系统(CANTAB)认知测试。
在用于验证测试的数据集上,CGB将个体分类为双相情感障碍或非双相情感障碍的准确率为73.2%,曲线下面积(AUROC)为0.785。双相情感障碍最强的认知预测指标是处理速度和情感处理指标。认知指标无法区分未患病后代和健康对照。
处理速度和情感处理的改变是小儿双相情感障碍的标志物。纵向研究应确定认知特征与健康对照相似的未患病后代患情绪障碍的风险是否更低或相同。未来的研究应纳入双相情感障碍的相关指标,如言语记忆和遗传风险评分。