Suppr超能文献

白质束定向变形依赖于实时轴突纤维方向。

White Matter Tract-Oriented Deformation Is Dependent on Real-Time Axonal Fiber Orientation.

机构信息

Department of Bioengineering, Stanford University, Stanford, California, USA.

Neuronic Engineering, KTH Royal Institute of Technology, Stockholm, Sweden.

出版信息

J Neurotrauma. 2021 Jun 15;38(12):1730-1745. doi: 10.1089/neu.2020.7412. Epub 2021 Feb 23.

Abstract

Traumatic axonal injury (TAI) is a critical public health issue with its pathogenesis remaining largely elusive. Finite element (FE) head models are promising tools to bridge the gap between mechanical insult, localized brain response, and resultant injury. In particular, the FE-derived deformation along the direction of white matter (WM) tracts (i.e., tract-oriented strain) has been shown to be an appropriate predictor for TAI. The evolution of fiber orientation in time during the impact and its potential influence on the tract-oriented strain remains unknown, however. To address this question, the present study leveraged an embedded element approach to track real-time fiber orientation during impacts. A new scheme to calculate the tract-oriented strain was proposed by projecting the strain tensors from pre-computed simulations along the temporal fiber direction instead of its static counterpart directly obtained from diffuse tensor imaging. The results revealed that incorporating the real-time fiber orientation not only altered the direction but also amplified the magnitude of the tract-oriented strain, resulting in a generally more extended distribution and a larger volume ratio of WM exposed to high deformation along fiber tracts. These effects were exacerbated with the impact severities characterized by the acceleration magnitudes. Results of this study provide insights into how best to incorporate fiber orientation in head injury models and derive the WM tract-oriented deformation from computational simulations, which is important for furthering our understanding of the underlying mechanisms of TAI.

摘要

创伤性轴索损伤(TAI)是一个严重的公共卫生问题,其发病机制在很大程度上仍难以捉摸。有限元(FE)头部模型是一种很有前途的工具,可以弥合机械损伤、局部脑反应和由此产生的损伤之间的差距。特别是,沿着白质(WM)束方向的 FE 衍生变形(即束定向应变)已被证明是 TAI 的一个合适的预测指标。然而,在冲击过程中纤维方向随时间的演变及其对束定向应变的潜在影响尚不清楚。为了解决这个问题,本研究利用嵌入式元素方法在冲击过程中实时跟踪纤维方向。通过将应变张量从预先计算的模拟中沿着时间纤维方向投影,而不是直接从弥散张量成像中获得其静态对应物,提出了一种计算束定向应变的新方案。结果表明,结合实时纤维方向不仅改变了方向,而且放大了束定向应变的幅度,导致 WM 暴露于纤维束中高变形的分布更广泛,体积比更大。这些影响随着以加速度幅度为特征的冲击严重程度而加剧。本研究的结果提供了关于如何最好地将纤维方向纳入头部损伤模型并从计算模拟中得出 WM 束定向变形的见解,这对于进一步了解 TAI 的潜在机制非常重要。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验