School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW, 2678, Australia.
Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, WA, 98109, USA.
Sci Rep. 2021 Jan 14;11(1):1274. doi: 10.1038/s41598-020-79649-5.
General control non-repressible 5 (GCN5)-related N-acetyltransferases (GNATs) catalyse the acetylation of a diverse range of substrates, thereby orchestrating a variety of biological processes within prokaryotes and eukaryotes. GNAT enzymes can catalyze the transfer of an acetyl group from acetyl coenzyme A to substrates such as aminoglycoside antibiotics, amino acids, polyamines, peptides, vitamins, catecholamines, and large macromolecules including proteins. Although GNATs generally exhibit low to moderate sequence identity, they share a conserved catalytic fold and conserved structural motifs. In this current study we characterize the high-resolution X-ray crystallographic structure of a GNAT enzyme bound with acetyl-CoA from Elizabethkingia anophelis, an important multi-drug resistant bacterium. The tertiary structure is comprised of six α-helices and nine β-strands, and is similar with other GNATs. We identify a new and uncharacterized GNAT dimer interface, which is conserved in at least two other unpublished GNAT structures. This suggests that GNAT enzymes can form at least five different types of dimers, in addition to a range of other oligomers including trimer, tetramer, hexamer, and dodecamer assemblies. The high-resolution structure presented in this study is suitable for future in-silico docking and structure-activity relationship studies.
一般调控不可抑制的 5(GCN5)相关的 N-乙酰基转移酶(GNATs)催化各种不同的底物的乙酰化,从而协调原核生物和真核生物中的各种生物学过程。GNAT 酶可以催化乙酰辅酶 A 上的乙酰基转移到氨基糖苷类抗生素、氨基酸、多胺、肽、维生素、儿茶酚胺和包括蛋白质在内的大的大分子等底物上。尽管 GNATs 通常表现出低到中等的序列同一性,但它们共享保守的催化折叠和保守的结构基序。在本研究中,我们描述了与伊丽莎白菌属(Elizabethkingia)的乙酰辅酶 A 结合的 GNAT 酶的高分辨率 X 射线晶体结构,伊丽莎白菌属是一种重要的多药耐药细菌。三级结构由六个α-螺旋和九个β-链组成,与其他 GNAT 相似。我们发现了一个新的、尚未表征的 GNAT 二聚体界面,它至少在另外两个未发表的 GNAT 结构中保守。这表明 GNAT 酶可以形成至少五种不同类型的二聚体,以及一系列其他寡聚体,包括三聚体、四聚体、六聚体和十二聚体组装体。本研究中呈现的高分辨率结构适合未来的计算机对接和结构-活性关系研究。