Suppr超能文献

利用 CT 图像的放射组学和深度学习特征融合提高可切除胰腺导管腺癌的预后性能。

Improving prognostic performance in resectable pancreatic ductal adenocarcinoma using radiomics and deep learning features fusion in CT images.

机构信息

Department of Medical Imaging, University of Toronto, 686 Bay Street, Toronto, ON, M5G 0A4, Canada.

Department of Diagnostic Imaging and Department of Oncology, Faculty of Medicine and Dentistry, Cross Cancer Institute, University of Alberta, Edmonton, AB, Canada.

出版信息

Sci Rep. 2021 Jan 14;11(1):1378. doi: 10.1038/s41598-021-80998-y.

Abstract

As an analytic pipeline for quantitative imaging feature extraction and analysis, radiomics has grown rapidly in the past decade. On the other hand, recent advances in deep learning and transfer learning have shown significant potential in the quantitative medical imaging field, raising the research question of whether deep transfer learning features have predictive information in addition to radiomics features. In this study, using CT images from Pancreatic Ductal Adenocarcinoma (PDAC) patients recruited in two independent hospitals, we discovered most transfer learning features have weak linear relationships with radiomics features, suggesting a potential complementary relationship between these two feature sets. We also tested the prognostic performance for overall survival using four feature fusion and reduction methods for combining radiomics and transfer learning features and compared the results with our proposed risk score-based feature fusion method. It was shown that the risk score-based feature fusion method significantly improves the prognosis performance for predicting overall survival in PDAC patients compared to other traditional feature reduction methods used in previous radiomics studies (40% increase in area under ROC curve (AUC) yielding AUC of 0.84).

摘要

作为一种定量成像特征提取和分析的分析流水线,放射组学在过去十年中得到了快速发展。另一方面,深度学习和迁移学习的最新进展在定量医学成像领域显示出了巨大的潜力,这就提出了一个研究问题,即除了放射组学特征之外,深度迁移学习特征是否具有预测信息。在这项研究中,我们使用了来自两家独立医院的胰腺导管腺癌(PDAC)患者的 CT 图像,发现大多数迁移学习特征与放射组学特征之间存在较弱的线性关系,这表明这两个特征集之间存在潜在的互补关系。我们还使用四种特征融合和降维方法来结合放射组学和迁移学习特征,测试了对总体生存率的预后性能,并将结果与我们提出的基于风险评分的特征融合方法进行了比较。结果表明,与以前放射组学研究中使用的其他传统特征降维方法相比(ROC 曲线下面积(AUC)增加 40%,AUC 达到 0.84),基于风险评分的特征融合方法显著提高了预测 PDAC 患者总体生存率的预后性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e70/7809062/1e3ae2a33145/41598_2021_80998_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验