Suppr超能文献

动作电位会在食虫的维纳斯捕蝇草植物中产生生物磁场。

Action potentials induce biomagnetic fields in carnivorous Venus flytrap plants.

机构信息

Helmholtz Institute Mainz, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany.

Johannes Gutenberg University of Mainz, Mainz, Germany.

出版信息

Sci Rep. 2021 Jan 14;11(1):1438. doi: 10.1038/s41598-021-81114-w.

Abstract

Upon stimulation, plants elicit electrical signals that can travel within a cellular network analogous to the animal nervous system. It is well-known that in the human brain, voltage changes in certain regions result from concerted electrical activity which, in the form of action potentials (APs), travels within nerve-cell arrays. Electro- and magnetophysiological techniques like electroencephalography, magnetoencephalography, and magnetic resonance imaging are used to record this activity and to diagnose disorders. Here we demonstrate that APs in a multicellular plant system produce measurable magnetic fields. Using atomic optically pumped magnetometers, biomagnetism associated with electrical activity in the carnivorous Venus flytrap, Dionaea muscipula, was recorded. Action potentials were induced by heat stimulation and detected both electrically and magnetically. Furthermore, the thermal properties of ion channels underlying the AP were studied. Beyond proof of principle, our findings pave the way to understanding the molecular basis of biomagnetism in living plants. In the future, magnetometry may be used to study long-distance electrical signaling in a variety of plant species, and to develop noninvasive diagnostics of plant stress and disease.

摘要

受到刺激时,植物会产生电信号,这些电信号可以在类似于动物神经系统的细胞网络中传播。众所周知,在人类大脑中,某些区域的电压变化是由协同的电活动引起的,这种电活动以动作电位 (AP) 的形式在神经细胞阵列中传播。脑电图、脑磁图和磁共振成像等电生理和磁生理技术被用于记录这种活动并诊断疾病。在这里,我们证明了多细胞植物系统中的 AP 会产生可测量的磁场。使用原子光泵磁力计,记录了与肉食性捕蝇草 Dionaea muscipula 电活动相关的生物磁。通过热刺激诱导动作电位,并通过电和磁两种方式进行检测。此外,还研究了产生 AP 的离子通道的热特性。除了证明原理之外,我们的发现为理解活体植物中生物磁的分子基础铺平了道路。将来,磁力计可用于研究各种植物物种中的远距离电信号传递,并开发对植物压力和疾病的非侵入性诊断。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fedf/7809347/f05cd2fd8903/41598_2021_81114_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验