Scherzer Sönke, Shabala Lana, Hedrich Benjamin, Fromm Jörg, Bauer Hubert, Munz Eberhard, Jakob Peter, Al-Rascheid Khaled A S, Kreuzer Ines, Becker Dirk, Eiblmeier Monika, Rennenberg Heinz, Shabala Sergey, Bennett Malcolm, Neher Erwin, Hedrich Rainer
Institute for Molecular Plant Physiology and Biophysics, University of Wuerzburg, D-97082 Wuerzburg, Germany.
School of Land and Food, University of Tasmania, Hobart, TAS 7001, Australia.
Proc Natl Acad Sci U S A. 2017 May 2;114(18):4822-4827. doi: 10.1073/pnas.1701860114. Epub 2017 Apr 17.
The Venus flytrap captures insects and consumes their flesh. Prey contacting touch-sensitive hairs trigger traveling electrical waves. These action potentials (APs) cause rapid closure of the trap and activate secretory functions of glands, which cover its inner surface. Such prey-induced haptoelectric stimulation activates the touch hormone jasmonate (JA) signaling pathway, which initiates secretion of an acidic hydrolase mixture to decompose the victim and acquire the animal nutrients. Although postulated since Darwin's pioneering studies, these secretory events have not been recorded so far. Using advanced analytical and imaging techniques, such as vibrating ion-selective electrodes, carbon fiber amperometry, and magnetic resonance imaging, we monitored stimulus-coupled glandular secretion into the flytrap. Trigger-hair bending or direct application of JA caused a quantal release of oxidizable material from gland cells monitored as distinct amperometric spikes. Spikes reminiscent of exocytotic events in secretory animal cells progressively increased in frequency, reaching steady state 1 d after stimulation. Our data indicate that trigger-hair mechanical stimulation evokes APs. Gland cells translate APs into touch-inducible JA signaling that promotes the formation of secretory vesicles. Early vesicles loaded with H and Cl fuse with the plasma membrane, hyperacidifying the "green stomach"-like digestive organ, whereas subsequent ones carry hydrolases and nutrient transporters, together with a glutathione redox moiety, which is likely to act as the major detected compound in amperometry. Hence, when glands perceive the haptoelectrical stimulation, secretory vesicles are tailored to be released in a sequence that optimizes digestion of the captured animal.
捕蝇草捕捉昆虫并食用它们的肉体。猎物接触到触敏毛会触发传播的电波。这些动作电位(APs)会导致捕蝇草陷阱迅速关闭,并激活覆盖其内表面的腺体的分泌功能。这种由猎物诱导的触觉电刺激激活了茉莉酸(JA)信号通路,该通路启动酸性水解酶混合物的分泌,以分解猎物并获取动物营养。尽管自达尔文的开创性研究以来就有推测,但这些分泌事件至今尚未被记录下来。我们使用先进的分析和成像技术,如振动离子选择性电极、碳纤维安培法和磁共振成像,监测了刺激耦合的腺体向捕蝇草内的分泌。触发毛弯曲或直接施加JA会导致腺细胞中可氧化物质的量子释放,通过独特的安培峰进行监测。类似于分泌性动物细胞中胞吐事件的峰频率逐渐增加,在刺激后1天达到稳定状态。我们的数据表明,触发毛的机械刺激会诱发动作电位。腺细胞将动作电位转化为触觉诱导的JA信号,促进分泌小泡的形成。早期装载有H和Cl的小泡与质膜融合,使类似“绿色胃”的消化器官超酸化,而随后的小泡则携带水解酶和营养转运蛋白,以及一个谷胱甘肽氧化还原部分,这可能是安培法中主要检测到的化合物。因此,当腺体感知到触觉电刺激时,分泌小泡会按照优化捕获动物消化的顺序被释放。