Suppr超能文献

外科手术室中的计算机视觉

Computer Vision in the Surgical Operating Room.

作者信息

Chadebecq François, Vasconcelos Francisco, Mazomenos Evangelos, Stoyanov Danail

机构信息

Department of Computer Science, Wellcome/EPSRC Centre for Interventional and Surgical Sciences (WEISS), University College London, London, United Kingdom.

出版信息

Visc Med. 2020 Dec;36(6):456-462. doi: 10.1159/000511934. Epub 2020 Oct 15.

Abstract

BACKGROUND

Multiple types of surgical cameras are used in modern surgical practice and provide a rich visual signal that is used by surgeons to visualize the clinical site and make clinical decisions. This signal can also be used by artificial intelligence (AI) methods to provide support in identifying instruments, structures, or activities both in real-time during procedures and postoperatively for analytics and understanding of surgical processes.

SUMMARY

In this paper, we provide a succinct perspective on the use of AI and especially computer vision to power solutions for the surgical operating room (OR). The synergy between data availability and technical advances in computational power and AI methodology has led to rapid developments in the field and promising advances.

KEY MESSAGES

With the increasing availability of surgical video sources and the convergence of technologies around video storage, processing, and understanding, we believe clinical solutions and products leveraging vision are going to become an important component of modern surgical capabilities. However, both technical and clinical challenges remain to be overcome to efficiently make use of vision-based approaches into the clinic.

摘要

背景

现代外科手术实践中使用多种类型的手术摄像头,它们提供丰富的视觉信号,外科医生利用这些信号来观察临床部位并做出临床决策。人工智能(AI)方法也可以利用该信号,在手术过程中实时以及术后为分析和理解手术过程提供支持,以识别器械、结构或活动。

总结

在本文中,我们简要介绍了人工智能尤其是计算机视觉在为手术室(OR)提供解决方案方面的应用。数据可用性与计算能力及人工智能方法的技术进步之间的协同作用推动了该领域的快速发展和有前景的进展。

关键信息

随着手术视频源的日益普及以及围绕视频存储、处理和理解的技术融合,我们相信利用视觉技术的临床解决方案和产品将成为现代手术能力的重要组成部分。然而,要有效地将基于视觉的方法应用于临床,仍需克服技术和临床方面的挑战。

相似文献

1
Computer Vision in the Surgical Operating Room.
Visc Med. 2020 Dec;36(6):456-462. doi: 10.1159/000511934. Epub 2020 Oct 15.
2
Artificial intelligence-based computer vision in surgery: Recent advances and future perspectives.
Ann Gastroenterol Surg. 2021 Oct 8;6(1):29-36. doi: 10.1002/ags3.12513. eCollection 2022 Jan.
3
Artificial Intelligence-Assisted Surgery: Potential and Challenges.
Visc Med. 2020 Dec;36(6):450-455. doi: 10.1159/000511351. Epub 2020 Nov 4.
4
Computer Vision in the Operating Room: Opportunities and Caveats.
IEEE Trans Med Robot Bionics. 2021 Feb;3(1):2-10. doi: 10.1109/tmrb.2020.3040002. Epub 2020 Nov 24.
5
Surgery utilizing artificial intelligence technology: why we should not rule it out.
Surg Today. 2023 Nov;53(11):1219-1224. doi: 10.1007/s00595-022-02601-9. Epub 2022 Oct 3.
6
Computer vision in surgery.
Surgery. 2021 May;169(5):1253-1256. doi: 10.1016/j.surg.2020.10.039. Epub 2020 Dec 1.
7
Machine and deep learning for workflow recognition during surgery.
Minim Invasive Ther Allied Technol. 2019 Apr;28(2):82-90. doi: 10.1080/13645706.2019.1584116. Epub 2019 Mar 8.
9
Artificial Intelligence Methods for Surgical Site Infection: Impacts on Detection, Monitoring, and Decision Making.
Surg Infect (Larchmt). 2019 Oct;20(7):546-554. doi: 10.1089/sur.2019.150. Epub 2019 Aug 27.
10
OR black box and surgical control tower: Recording and streaming data and analytics to improve surgical care.
J Visc Surg. 2021 Jun;158(3S):S18-S25. doi: 10.1016/j.jviscsurg.2021.01.004. Epub 2021 Mar 9.

引用本文的文献

1
Human-Computer Vision Collaborative Measurement of Surgical Exposure and Length in Endonasal Endoscopic Skull Base Surgery.
IEEE Open J Eng Med Biol. 2025 Jul 10;6:480-487. doi: 10.1109/OJEMB.2025.3587947. eCollection 2025.
2
Clear Vision, Clear Savings: Enhancing Efficiency in Minimally Invasive Surgery.
JSLS. 2025 Jul-Sep;29(3). doi: 10.4293/JSLS.2025.00023. Epub 2025 Jul 14.
3
Training-free temporal object tracking in surgical videos.
Int J Comput Assist Radiol Surg. 2025 Jun;20(6):1067-1075. doi: 10.1007/s11548-025-03349-6. Epub 2025 Apr 1.
4
Hyperspectral imaging in neurosurgery: a review of systems, computational methods, and clinical applications.
J Biomed Opt. 2025 Feb;30(2):023512. doi: 10.1117/1.JBO.30.2.023512. Epub 2024 Nov 13.
5
Artificial intelligence in robot-assisted radical prostatectomy: where do we stand today?
J Robot Surg. 2024 Nov 11;18(1):404. doi: 10.1007/s11701-024-02143-x.
9
Deep Learning Model for Real‑time Semantic Segmentation During Intraoperative Robotic Prostatectomy.
Eur Urol Open Sci. 2024 Feb 27;62:47-53. doi: 10.1016/j.euros.2024.02.005. eCollection 2024 Apr.

本文引用的文献

1
Deep learning-based anatomical site classification for upper gastrointestinal endoscopy.
Int J Comput Assist Radiol Surg. 2020 Jul;15(7):1085-1094. doi: 10.1007/s11548-020-02148-5. Epub 2020 May 6.
2
Surgical spectral imaging.
Med Image Anal. 2020 Jul;63:101699. doi: 10.1016/j.media.2020.101699. Epub 2020 Apr 13.
3
Augmented and Mixed Reality: Technologies for Enhancing the Future of IR.
J Vasc Interv Radiol. 2020 Jul;31(7):1074-1082. doi: 10.1016/j.jvir.2019.09.020. Epub 2020 Feb 13.
4
Details preserved unsupervised depth estimation by fusing traditional stereo knowledge from laparoscopic images.
Healthc Technol Lett. 2019 Nov 13;6(6):154-158. doi: 10.1049/htl.2019.0063. eCollection 2019 Dec.
5
CAI4CAI: The Rise of Contextual Artificial Intelligence in Computer Assisted Interventions.
Proc IEEE Inst Electr Electron Eng. 2020 Jan;108(1):198-214. doi: 10.1109/JPROC.2019.2946993. Epub 2019 Oct 23.
7
Accurate and interpretable evaluation of surgical skills from kinematic data using fully convolutional neural networks.
Int J Comput Assist Radiol Surg. 2019 Sep;14(9):1611-1617. doi: 10.1007/s11548-019-02039-4. Epub 2019 Jul 30.
8
Surgical skill levels: Classification and analysis using deep neural network model and motion signals.
Comput Methods Programs Biomed. 2019 Aug;177:1-8. doi: 10.1016/j.cmpb.2019.05.008. Epub 2019 May 13.
9
Tracking Clinical Staff Behaviors in an Operating Room.
Sensors (Basel). 2019 May 17;19(10):2287. doi: 10.3390/s19102287.
10
Surgical data science for next-generation interventions.
Nat Biomed Eng. 2017 Sep;1(9):691-696. doi: 10.1038/s41551-017-0132-7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验