Suppr超能文献

综合生物信息学分析和初步临床验证鉴定严重流感感染的关键候选生物标志物。

Identification of key candidate biomarkers for severe influenza infection by integrated bioinformatical analysis and initial clinical validation.

机构信息

China-Japan Friendship Hospital, National Clinical Research Center for Respiratory Diseases, Clinical Center for Pulmonary Infections, Capital Medical University, Beijing, China.

Department of Pulmonary and Critical Care Medicine, Center for Respiratory Diseases, China-Japan Friendship Hospital, Beijing, China.

出版信息

J Cell Mol Med. 2021 Feb;25(3):1725-1738. doi: 10.1111/jcmm.16275. Epub 2021 Jan 14.

Abstract

One of the key barriers for early identification and intervention of severe influenza cases is a lack of reliable immunologic indicators. In this study, we utilized differentially expressed genes screening incorporating weighted gene co-expression network analysis in one eligible influenza GEO data set (GSE111368) to identify hub genes associated with clinical severity. A total of 10 genes (PBI, MMP8, TCN1, RETN, OLFM4, ELANE, LTF, LCN2, DEFA4 and HP) were identified. Gene set enrichment analysis (GSEA) for single hub gene revealed that these genes had a close association with antimicrobial response and neutrophils activity. To further evaluate these genes' ability for diagnosis/prognosis of disease developments, we adopted double validation with (a) another new independent data set (GSE101702); and (b) plasma samples collected from hospitalized influenza patients. We found that 10 hub genes presented highly correlation with disease severity. In particular, BPI and MMP8 encoding proteins in plasma achieved higher expression in severe and dead cases, which indicated an adverse disease development and suggested a frustrating prognosis. These findings provide new insight into severe influenza pathogenesis and identify two significant candidate genes that were superior to the conventional clinical indicators. These candidate genes or encoding proteins could be biomarker for clinical diagnosis and therapeutic targets for severe influenza infection.

摘要

早期识别和干预严重流感病例的一个关键障碍是缺乏可靠的免疫指标。在这项研究中,我们利用差异表达基因筛选结合加权基因共表达网络分析,在一个合格的流感 GEO 数据集(GSE111368)中识别与临床严重程度相关的关键基因。总共鉴定出 10 个基因(PBI、MMP8、TCN1、RETN、OLFM4、ELANE、LTF、LCN2、DEFA4 和 HP)。单个关键基因的基因集富集分析(GSEA)表明,这些基因与抗菌反应和中性粒细胞活性密切相关。为了进一步评估这些基因对疾病发展的诊断/预后能力,我们采用了双重验证方法:(a)另一个新的独立数据集(GSE101702);(b)从住院流感患者采集的血浆样本。我们发现 10 个关键基因与疾病严重程度高度相关。特别是,血浆中 BPI 和 MMP8 编码的蛋白质在严重和死亡病例中表达更高,这表明疾病发展不良,预后令人沮丧。这些发现为严重流感的发病机制提供了新的见解,并确定了两个优于传统临床指标的重要候选基因。这些候选基因或编码蛋白可作为临床诊断的生物标志物和严重流感感染的治疗靶点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b7b0/7875920/bf38b2ad9856/JCMM-25-1725-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验